Reproducibility in Radiomics: A Comparison of Feature Extraction Methods and Two Independent Datasets Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202305.1872.v1
Radiomics involves the extraction of information from medical images not visible to the human eye. There is evidence these features can be used for treatment stratification and outcome prediction. However, there is much discussion about the reproducibility of results between different studies. This paper studies the reproducibility of CT texture features used in radiomics, comparing two feature extraction implementations namely Matlab toolkit and Pyradiomics when applied on independent datasets of CT scans of patients i) the open access RIDER dataset containing a set of repeat CT scans taken 15 minutes apart for 31 patients (RIDER Scan 1 and Scan 2 respectively) treated for lung cancer and ii) the open access HN1 dataset containing 137 patients treated for head and neck cancer. Gross tumor volume (GTV) manually outlined by an experienced observer available on both datasets was used. 43 common radiomics features available on Matlab and Pyradiomics were calculated using 2 intensity-level quantization methods with and without an intensity threshold. Cases were ranked for each feature for all combinations of quantization parameters and the Spearman’s rank coefficient, rs, calculated. Reproducibility was defined when a highly correlated feature in the RIDER dataset also correlated highly in the HN1 dataset and vice versa. 29 out of 43 reported stable features were found to be highly reproducible between Matlab and Pyradiomics implementations, having consistently high correlation in rank ordering for RIDER Scan 1 and RIDER Scan 2 (rs > 0.8). 18/43 reported features were common in RIDER and HN1 datasets, suggesting they may be agnostic to disease site. Useful radiomics features should be selected based on reproducibility. This study identified a set of features that meet this requirement and validated the methodology for evaluating reproducibility between datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202305.1872.v1
- https://www.preprints.org/manuscript/202305.1872/v1/download
- OA Status
- green
- Cited By
- 3
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4378602323
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4378602323Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202305.1872.v1Digital Object Identifier
- Title
-
Reproducibility in Radiomics: A Comparison of Feature Extraction Methods and Two Independent DatasetsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-26Full publication date if available
- Authors
-
Hannah Thomas, Helen Y. C. Wang, Amal Joseph Varghese, Ellen M. Donovan, C. South, Helen Saxby, A. Nisbet, Vineet Prakash, Balu Krishna Sasidharan, Simon Pavamani, Delan Devakumar, Manu Mathew, Rajesh Isiah, Philip EvansList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202305.1872.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202305.1872/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202305.1872/v1/downloadDirect OA link when available
- Concepts
-
Reproducibility, Computer science, Radiomics, Artificial intelligence, Pattern recognition (psychology), Feature extraction, MATLAB, Implementation, Data mining, Mathematics, Statistics, Programming language, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4378602323 |
|---|---|
| doi | https://doi.org/10.20944/preprints202305.1872.v1 |
| ids.doi | https://doi.org/10.20944/preprints202305.1872.v1 |
| ids.openalex | https://openalex.org/W4378602323 |
| fwci | 0.9271649 |
| type | preprint |
| title | Reproducibility in Radiomics: A Comparison of Feature Extraction Methods and Two Independent Datasets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T11067 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9842000007629395 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2730 |
| topics[1].subfield.display_name | Oncology |
| topics[1].display_name | Colorectal Cancer Treatments and Studies |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9832000136375427 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9893847 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8683985471725464 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1425625 |
| concepts[0].display_name | Reproducibility |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6076717972755432 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778559731 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5381489992141724 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q23808793 |
| concepts[2].display_name | Radiomics |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5299718379974365 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49184393882751465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4747764766216278 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C2780365114 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4584900438785553 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q169478 |
| concepts[6].display_name | MATLAB |
| concepts[7].id | https://openalex.org/C26713055 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44334763288497925 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245962 |
| concepts[7].display_name | Implementation |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35172390937805176 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.21715331077575684 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2009654939174652 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/reproducibility |
| keywords[0].score | 0.8683985471725464 |
| keywords[0].display_name | Reproducibility |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6076717972755432 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/radiomics |
| keywords[2].score | 0.5381489992141724 |
| keywords[2].display_name | Radiomics |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5299718379974365 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.49184393882751465 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.4747764766216278 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/matlab |
| keywords[6].score | 0.4584900438785553 |
| keywords[6].display_name | MATLAB |
| keywords[7].id | https://openalex.org/keywords/implementation |
| keywords[7].score | 0.44334763288497925 |
| keywords[7].display_name | Implementation |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.35172390937805176 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.21715331077575684 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.2009654939174652 |
| keywords[10].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.20944/preprints202305.1872.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202305.1872/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202305.1872.v1 |
| locations[1].id | pmh:oai:alma.44SUR_INST:11185270880002346 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306402651 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Surrey Open Research repository (University of Surrey) |
| locations[1].source.host_organization | https://openalex.org/I28290843 |
| locations[1].source.host_organization_name | University of Surrey |
| locations[1].source.host_organization_lineage | https://openalex.org/I28290843 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5035477951 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1454-512X |
| authorships[0].author.display_name | Hannah Thomas |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I172917736 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[0].institutions[0].id | https://openalex.org/I172917736 |
| authorships[0].institutions[0].ror | https://ror.org/00c7kvd80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I172917736 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Christian Medical College, Vellore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hannah Mary Thomas |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[1].author.id | https://openalex.org/A5028914416 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Helen Y. C. Wang |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210146582 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medical Physics, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I28290843 |
| authorships[1].affiliations[1].raw_affiliation_string | Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK; |
| authorships[1].institutions[0].id | https://openalex.org/I4210146582 |
| authorships[1].institutions[0].ror | https://ror.org/050bd8661 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210146582 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Royal Surrey NHS Foundation Trust |
| authorships[1].institutions[1].id | https://openalex.org/I28290843 |
| authorships[1].institutions[1].ror | https://ror.org/00ks66431 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I28290843 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | University of Surrey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Helen YC Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK;, Department of Medical Physics, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[2].author.id | https://openalex.org/A5073180973 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-2844-7611 |
| authorships[2].author.display_name | Amal Joseph Varghese |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I172917736 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[2].institutions[0].id | https://openalex.org/I172917736 |
| authorships[2].institutions[0].ror | https://ror.org/00c7kvd80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I172917736 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Christian Medical College, Vellore |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amal Joseph Varghese |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[3].author.id | https://openalex.org/A5021891658 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1692-1587 |
| authorships[3].author.display_name | Ellen M. Donovan |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I28290843 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK; |
| authorships[3].institutions[0].id | https://openalex.org/I28290843 |
| authorships[3].institutions[0].ror | https://ror.org/00ks66431 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I28290843 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Surrey |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ellen M Donovan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK; |
| authorships[4].author.id | https://openalex.org/A5020211026 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7150-4826 |
| authorships[4].author.display_name | C. South |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210146582 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Medical Physics, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[4].institutions[0].id | https://openalex.org/I4210146582 |
| authorships[4].institutions[0].ror | https://ror.org/050bd8661 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210146582 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Royal Surrey NHS Foundation Trust |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chris P South |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Medical Physics, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[5].author.id | https://openalex.org/A5019315710 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Helen Saxby |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210146582 |
| authorships[5].affiliations[0].raw_affiliation_string | St Luke's Cancer Centre, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[5].institutions[0].id | https://openalex.org/I4210146582 |
| authorships[5].institutions[0].ror | https://ror.org/050bd8661 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210146582 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Royal Surrey NHS Foundation Trust |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Helen Saxby |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | St Luke's Cancer Centre, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[6].author.id | https://openalex.org/A5015961120 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0652-808X |
| authorships[6].author.display_name | A. Nisbet |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Medical Physics and Biomedical Engineering, Malet Place, University College London, Lon-don, WC1E 6BT, UK; |
| authorships[6].institutions[0].id | https://openalex.org/I45129253 |
| authorships[6].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University College London |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Andrew Nisbet |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Medical Physics and Biomedical Engineering, Malet Place, University College London, Lon-don, WC1E 6BT, UK; |
| authorships[7].author.id | https://openalex.org/A5110673295 |
| authorships[7].author.orcid | https://orcid.org/0009-0001-7554-2686 |
| authorships[7].author.display_name | Vineet Prakash |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210146582 |
| authorships[7].affiliations[0].raw_affiliation_string | St Luke's Cancer Centre, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[7].institutions[0].id | https://openalex.org/I4210146582 |
| authorships[7].institutions[0].ror | https://ror.org/050bd8661 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210146582 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | Royal Surrey NHS Foundation Trust |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Vineet Prakash |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | St Luke's Cancer Centre, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; |
| authorships[8].author.id | https://openalex.org/A5067337969 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2814-161X |
| authorships[8].author.display_name | Balu Krishna Sasidharan |
| authorships[8].countries | IN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I172917736 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[8].institutions[0].id | https://openalex.org/I172917736 |
| authorships[8].institutions[0].ror | https://ror.org/00c7kvd80 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I172917736 |
| authorships[8].institutions[0].country_code | IN |
| authorships[8].institutions[0].display_name | Christian Medical College, Vellore |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Sasidharan Balu Krishna |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[9].author.id | https://openalex.org/A5016035469 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6258-1574 |
| authorships[9].author.display_name | Simon Pavamani |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Simon Pradeep Pavamani |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5021362607 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-8695-6817 |
| authorships[10].author.display_name | Delan Devakumar |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Devakumar D |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5103701595 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-1692-0058 |
| authorships[11].author.display_name | Manu Mathew |
| authorships[11].countries | IN |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I172917736 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I172917736 |
| authorships[11].affiliations[1].raw_affiliation_string | Department of Nuclear Medicine, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[11].institutions[0].id | https://openalex.org/I172917736 |
| authorships[11].institutions[0].ror | https://ror.org/00c7kvd80 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I172917736 |
| authorships[11].institutions[0].country_code | IN |
| authorships[11].institutions[0].display_name | Christian Medical College, Vellore |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Manu Mathew |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Nuclear Medicine, Christian Medical College Vellore, Tamil Nadu, 632004, India;, Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[12].author.id | https://openalex.org/A5090898107 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Rajesh Isiah |
| authorships[12].countries | IN |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I172917736 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[12].institutions[0].id | https://openalex.org/I172917736 |
| authorships[12].institutions[0].ror | https://ror.org/00c7kvd80 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I172917736 |
| authorships[12].institutions[0].country_code | IN |
| authorships[12].institutions[0].display_name | Christian Medical College, Vellore |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Rajesh Isiah |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[13].author.id | https://openalex.org/A5010368060 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-8102-6581 |
| authorships[13].author.display_name | Philip Evans |
| authorships[13].countries | GB, IN |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I28290843 |
| authorships[13].affiliations[0].raw_affiliation_string | Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK; |
| authorships[13].affiliations[1].institution_ids | https://openalex.org/I172917736 |
| authorships[13].affiliations[1].raw_affiliation_string | Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| authorships[13].institutions[0].id | https://openalex.org/I28290843 |
| authorships[13].institutions[0].ror | https://ror.org/00ks66431 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I28290843 |
| authorships[13].institutions[0].country_code | GB |
| authorships[13].institutions[0].display_name | University of Surrey |
| authorships[13].institutions[1].id | https://openalex.org/I172917736 |
| authorships[13].institutions[1].ror | https://ror.org/00c7kvd80 |
| authorships[13].institutions[1].type | education |
| authorships[13].institutions[1].lineage | https://openalex.org/I172917736 |
| authorships[13].institutions[1].country_code | IN |
| authorships[13].institutions[1].display_name | Christian Medical College, Vellore |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Philip M Evans |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK;, Department of Radiation Oncology, Christian Medical College Vellore, Tamil Nadu, 632004, India; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202305.1872/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reproducibility in Radiomics: A Comparison of Feature Extraction Methods and Two Independent Datasets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2413717610, https://openalex.org/W1973270181, https://openalex.org/W2417696084, https://openalex.org/W2368782778, https://openalex.org/W2087830269, https://openalex.org/W3106281778, https://openalex.org/W2003643616, https://openalex.org/W638612878, https://openalex.org/W4324138256, https://openalex.org/W2140154150 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.20944/preprints202305.1872.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202305.1872/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202305.1872.v1 |
| primary_location.id | doi:10.20944/preprints202305.1872.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202305.1872/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202305.1872.v1 |
| publication_date | 2023-05-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2103004421, https://openalex.org/W2726395676, https://openalex.org/W2169877598, https://openalex.org/W2806986802, https://openalex.org/W2062744135, https://openalex.org/W2338137334, https://openalex.org/W2165927297, https://openalex.org/W2599895745, https://openalex.org/W2944865543, https://openalex.org/W2600642189, https://openalex.org/W2124932867, https://openalex.org/W6921656061, https://openalex.org/W3164633738, https://openalex.org/W2150148763, https://openalex.org/W2552342083, https://openalex.org/W2954830774 |
| referenced_works_count | 16 |
| abstract_inverted_index.1 | 96, 228 |
| abstract_inverted_index.2 | 99, 149, 232 |
| abstract_inverted_index.a | 81, 182, 266 |
| abstract_inverted_index.15 | 88 |
| abstract_inverted_index.29 | 200 |
| abstract_inverted_index.31 | 92 |
| abstract_inverted_index.43 | 137, 203 |
| abstract_inverted_index.CT | 48, 70, 85 |
| abstract_inverted_index.an | 128, 156 |
| abstract_inverted_index.be | 21, 210, 249, 258 |
| abstract_inverted_index.by | 127 |
| abstract_inverted_index.i) | 74 |
| abstract_inverted_index.in | 52, 186, 193, 222, 241 |
| abstract_inverted_index.is | 16, 31 |
| abstract_inverted_index.of | 4, 37, 47, 69, 72, 83, 168, 202, 268 |
| abstract_inverted_index.on | 66, 132, 142, 261 |
| abstract_inverted_index.to | 11, 209, 251 |
| abstract_inverted_index.(rs | 233 |
| abstract_inverted_index.137 | 113 |
| abstract_inverted_index.HN1 | 110, 195, 244 |
| abstract_inverted_index.all | 166 |
| abstract_inverted_index.and | 26, 62, 97, 105, 118, 144, 154, 171, 197, 215, 229, 243, 274 |
| abstract_inverted_index.can | 20 |
| abstract_inverted_index.for | 23, 91, 102, 116, 162, 165, 225, 278 |
| abstract_inverted_index.ii) | 106 |
| abstract_inverted_index.may | 248 |
| abstract_inverted_index.not | 9 |
| abstract_inverted_index.out | 201 |
| abstract_inverted_index.rs, | 176 |
| abstract_inverted_index.set | 82, 267 |
| abstract_inverted_index.the | 2, 12, 35, 45, 75, 107, 172, 187, 194, 276 |
| abstract_inverted_index.two | 55 |
| abstract_inverted_index.was | 135, 179 |
| abstract_inverted_index.Scan | 95, 98, 227, 231 |
| abstract_inverted_index.This | 42, 263 |
| abstract_inverted_index.also | 190 |
| abstract_inverted_index.both | 133 |
| abstract_inverted_index.each | 163 |
| abstract_inverted_index.eye. | 14 |
| abstract_inverted_index.from | 6 |
| abstract_inverted_index.head | 117 |
| abstract_inverted_index.high | 220 |
| abstract_inverted_index.lung | 103 |
| abstract_inverted_index.meet | 271 |
| abstract_inverted_index.much | 32 |
| abstract_inverted_index.neck | 119 |
| abstract_inverted_index.open | 76, 108 |
| abstract_inverted_index.rank | 174, 223 |
| abstract_inverted_index.that | 270 |
| abstract_inverted_index.they | 247 |
| abstract_inverted_index.this | 272 |
| abstract_inverted_index.used | 22, 51 |
| abstract_inverted_index.vice | 198 |
| abstract_inverted_index.were | 146, 160, 207, 239 |
| abstract_inverted_index.when | 64, 181 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.(GTV) | 124 |
| abstract_inverted_index.0.8). | 235 |
| abstract_inverted_index.18/43 | 236 |
| abstract_inverted_index.Cases | 159 |
| abstract_inverted_index.Gross | 121 |
| abstract_inverted_index.RIDER | 78, 188, 226, 230, 242 |
| abstract_inverted_index.There | 15 |
| abstract_inverted_index.about | 34 |
| abstract_inverted_index.apart | 90 |
| abstract_inverted_index.based | 260 |
| abstract_inverted_index.found | 208 |
| abstract_inverted_index.human | 13 |
| abstract_inverted_index.paper | 43 |
| abstract_inverted_index.scans | 71, 86 |
| abstract_inverted_index.site. | 253 |
| abstract_inverted_index.study | 264 |
| abstract_inverted_index.taken | 87 |
| abstract_inverted_index.there | 30 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.tumor | 122 |
| abstract_inverted_index.used. | 136 |
| abstract_inverted_index.using | 148 |
| abstract_inverted_index.(RIDER | 94 |
| abstract_inverted_index.Matlab | 60, 143, 214 |
| abstract_inverted_index.Useful | 254 |
| abstract_inverted_index.access | 77, 109 |
| abstract_inverted_index.cancer | 104 |
| abstract_inverted_index.common | 138, 240 |
| abstract_inverted_index.having | 218 |
| abstract_inverted_index.highly | 183, 192, 211 |
| abstract_inverted_index.images | 8 |
| abstract_inverted_index.namely | 59 |
| abstract_inverted_index.ranked | 161 |
| abstract_inverted_index.repeat | 84 |
| abstract_inverted_index.should | 257 |
| abstract_inverted_index.stable | 205 |
| abstract_inverted_index.versa. | 199 |
| abstract_inverted_index.volume | 123 |
| abstract_inverted_index.applied | 65 |
| abstract_inverted_index.between | 39, 213, 281 |
| abstract_inverted_index.cancer. | 120 |
| abstract_inverted_index.dataset | 79, 111, 189, 196 |
| abstract_inverted_index.defined | 180 |
| abstract_inverted_index.disease | 252 |
| abstract_inverted_index.feature | 56, 164, 185 |
| abstract_inverted_index.medical | 7 |
| abstract_inverted_index.methods | 152 |
| abstract_inverted_index.minutes | 89 |
| abstract_inverted_index.outcome | 27 |
| abstract_inverted_index.results | 38 |
| abstract_inverted_index.studies | 44 |
| abstract_inverted_index.texture | 49 |
| abstract_inverted_index.toolkit | 61 |
| abstract_inverted_index.treated | 101, 115 |
| abstract_inverted_index.visible | 10 |
| abstract_inverted_index.without | 155 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.agnostic | 250 |
| abstract_inverted_index.datasets | 68, 134 |
| abstract_inverted_index.evidence | 17 |
| abstract_inverted_index.features | 19, 50, 140, 206, 238, 256, 269 |
| abstract_inverted_index.involves | 1 |
| abstract_inverted_index.manually | 125 |
| abstract_inverted_index.observer | 130 |
| abstract_inverted_index.ordering | 224 |
| abstract_inverted_index.outlined | 126 |
| abstract_inverted_index.patients | 73, 93, 114 |
| abstract_inverted_index.reported | 204, 237 |
| abstract_inverted_index.selected | 259 |
| abstract_inverted_index.studies. | 41 |
| abstract_inverted_index.Radiomics | 0 |
| abstract_inverted_index.available | 131, 141 |
| abstract_inverted_index.comparing | 54 |
| abstract_inverted_index.datasets, | 245 |
| abstract_inverted_index.datasets. | 282 |
| abstract_inverted_index.different | 40 |
| abstract_inverted_index.intensity | 157 |
| abstract_inverted_index.radiomics | 139, 255 |
| abstract_inverted_index.treatment | 24 |
| abstract_inverted_index.validated | 275 |
| abstract_inverted_index.calculated | 147 |
| abstract_inverted_index.containing | 80, 112 |
| abstract_inverted_index.correlated | 184, 191 |
| abstract_inverted_index.discussion | 33 |
| abstract_inverted_index.evaluating | 279 |
| abstract_inverted_index.extraction | 3, 57 |
| abstract_inverted_index.identified | 265 |
| abstract_inverted_index.parameters | 170 |
| abstract_inverted_index.radiomics, | 53 |
| abstract_inverted_index.suggesting | 246 |
| abstract_inverted_index.threshold. | 158 |
| abstract_inverted_index.Pyradiomics | 63, 145, 216 |
| abstract_inverted_index.calculated. | 177 |
| abstract_inverted_index.correlation | 221 |
| abstract_inverted_index.experienced | 129 |
| abstract_inverted_index.independent | 67 |
| abstract_inverted_index.information | 5 |
| abstract_inverted_index.methodology | 277 |
| abstract_inverted_index.prediction. | 28 |
| abstract_inverted_index.requirement | 273 |
| abstract_inverted_index.> | 234 |
| abstract_inverted_index.Spearman’s | 173 |
| abstract_inverted_index.coefficient, | 175 |
| abstract_inverted_index.combinations | 167 |
| abstract_inverted_index.consistently | 219 |
| abstract_inverted_index.quantization | 151, 169 |
| abstract_inverted_index.reproducible | 212 |
| abstract_inverted_index.respectively) | 100 |
| abstract_inverted_index.stratification | 25 |
| abstract_inverted_index.Reproducibility | 178 |
| abstract_inverted_index.implementations | 58 |
| abstract_inverted_index.intensity-level | 150 |
| abstract_inverted_index.reproducibility | 36, 46, 280 |
| abstract_inverted_index.implementations, | 217 |
| abstract_inverted_index.reproducibility. | 262 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 14 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.72873107 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |