Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China Article Swipe
Fuyu Wang
,
Jian Cen
,
Zongwei Yu
,
Shijun Deng
,
Guomin Zhang
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.egyr.2022.08.237
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.egyr.2022.08.237
Related Topics
Concepts
Convolutional neural network
Computer science
Artificial intelligence
Wavelet
Noise reduction
Generalization
Pattern recognition (psychology)
Noise (video)
Feature (linguistics)
Deep learning
Wavelet transform
Artificial neural network
Mathematics
Image (mathematics)
Linguistics
Mathematical analysis
Philosophy
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.egyr.2022.08.237
- OA Status
- gold
- Cited By
- 37
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4294693854
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4294693854Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.egyr.2022.08.237Digital Object Identifier
- Title
-
Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in ChinaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-05Full publication date if available
- Authors
-
Fuyu Wang, Jian Cen, Zongwei Yu, Shijun Deng, Guomin ZhangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.egyr.2022.08.237Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.egyr.2022.08.237Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Artificial intelligence, Wavelet, Noise reduction, Generalization, Pattern recognition (psychology), Noise (video), Feature (linguistics), Deep learning, Wavelet transform, Artificial neural network, Mathematics, Image (mathematics), Linguistics, Mathematical analysis, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
37Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 15, 2023: 10, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4294693854 |
|---|---|
| doi | https://doi.org/10.1016/j.egyr.2022.08.237 |
| ids.doi | https://doi.org/10.1016/j.egyr.2022.08.237 |
| ids.openalex | https://openalex.org/W4294693854 |
| fwci | 3.98292865 |
| type | article |
| title | Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 10962 |
| biblio.first_page | 10950 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T10121 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9958999752998352 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Building Energy and Comfort Optimization |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list.value | 2090 |
| apc_list.currency | USD |
| apc_list.value_usd | 2090 |
| apc_paid.value | 2090 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2090 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7516424655914307 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7106581330299377 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.627323567867279 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C47432892 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6194087862968445 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[3].display_name | Wavelet |
| concepts[4].id | https://openalex.org/C163294075 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6047912836074829 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[4].display_name | Noise reduction |
| concepts[5].id | https://openalex.org/C177148314 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5819588899612427 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[5].display_name | Generalization |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5562237501144409 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5281324982643127 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4605201482772827 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45842233300209045 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C196216189 |
| concepts[10].level | 3 |
| concepts[10].score | 0.45370832085609436 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[10].display_name | Wavelet transform |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42870935797691345 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08632931113243103 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.07094308733940125 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7516424655914307 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7106581330299377 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.627323567867279 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/wavelet |
| keywords[3].score | 0.6194087862968445 |
| keywords[3].display_name | Wavelet |
| keywords[4].id | https://openalex.org/keywords/noise-reduction |
| keywords[4].score | 0.6047912836074829 |
| keywords[4].display_name | Noise reduction |
| keywords[5].id | https://openalex.org/keywords/generalization |
| keywords[5].score | 0.5819588899612427 |
| keywords[5].display_name | Generalization |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5562237501144409 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.5281324982643127 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.4605201482772827 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.45842233300209045 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/wavelet-transform |
| keywords[10].score | 0.45370832085609436 |
| keywords[10].display_name | Wavelet transform |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.42870935797691345 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.08632931113243103 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.07094308733940125 |
| keywords[13].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1016/j.egyr.2022.08.237 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898434319 |
| locations[0].source.issn | 2352-4847 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-4847 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energy Reports |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy Reports |
| locations[0].landing_page_url | https://doi.org/10.1016/j.egyr.2022.08.237 |
| locations[1].id | pmh:oai:doaj.org/article:68b28a9f695d4ae6a48f606ffe62ae6a |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energy Reports, Vol 8, Iss , Pp 10950-10962 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/68b28a9f695d4ae6a48f606ffe62ae6a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101534621 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6654-6047 |
| authorships[0].author.display_name | Fuyu Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].raw_affiliation_string | Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou, 510665, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210122543 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210122543 |
| authorships[0].institutions[0].ror | https://ror.org/02pcb5m77 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210122543 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangdong Polytechnic Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fuyu Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou, 510665, China, School of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China |
| authorships[1].author.id | https://openalex.org/A5051284836 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1714-7397 |
| authorships[1].author.display_name | Jian Cen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210122543 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China |
| authorships[1].affiliations[1].raw_affiliation_string | Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou, 510665, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210122543 |
| authorships[1].institutions[0].ror | https://ror.org/02pcb5m77 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210122543 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangdong Polytechnic Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jian Cen |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou, 510665, China, School of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China |
| authorships[2].author.id | https://openalex.org/A5073156968 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zongwei Yu |
| authorships[2].affiliations[0].raw_affiliation_string | Guangzhou S.energy Electronics Technology Co., LTD, Guangzhou, 510100, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zongwei Yu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Guangzhou S.energy Electronics Technology Co., LTD, Guangzhou, 510100, China |
| authorships[3].author.id | https://openalex.org/A5101122996 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-5450-9042 |
| authorships[3].author.display_name | Shijun Deng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].raw_affiliation_string | Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou, 510665, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210122543 |
| authorships[3].affiliations[1].raw_affiliation_string | School of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210122543 |
| authorships[3].institutions[0].ror | https://ror.org/02pcb5m77 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210122543 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangdong Polytechnic Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shijun Deng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou, 510665, China, School of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China |
| authorships[4].author.id | https://openalex.org/A5100629178 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3503-7431 |
| authorships[4].author.display_name | Guomin Zhang |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Engineering, RMIT University, Melbourne, 3004, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I82951845 |
| authorships[4].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | RMIT University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Guomin Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Engineering, RMIT University, Melbourne, 3004, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.egyr.2022.08.237 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W2382174632, https://openalex.org/W2371138613, https://openalex.org/W2129959498, https://openalex.org/W2048963458, https://openalex.org/W2784060934, https://openalex.org/W43109613, https://openalex.org/W2359952343, https://openalex.org/W2902714807, https://openalex.org/W2077021924 |
| cited_by_count | 37 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.egyr.2022.08.237 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898434319 |
| best_oa_location.source.issn | 2352-4847 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-4847 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energy Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.egyr.2022.08.237 |
| primary_location.id | doi:10.1016/j.egyr.2022.08.237 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898434319 |
| primary_location.source.issn | 2352-4847 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-4847 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energy Reports |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy Reports |
| primary_location.landing_page_url | https://doi.org/10.1016/j.egyr.2022.08.237 |
| publication_date | 2022-09-05 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2012072009, https://openalex.org/W6771656754, https://openalex.org/W2754029504, https://openalex.org/W1974847623, https://openalex.org/W2790336283, https://openalex.org/W4211076903, https://openalex.org/W2075891641, https://openalex.org/W3137224754, https://openalex.org/W2945223169, https://openalex.org/W4212861398, https://openalex.org/W3200062633, https://openalex.org/W3036859704, https://openalex.org/W2171375535, https://openalex.org/W2057829714, https://openalex.org/W2036854813, https://openalex.org/W1875542790, https://openalex.org/W3180288799, https://openalex.org/W2133720763, https://openalex.org/W2068383584, https://openalex.org/W2948490758, https://openalex.org/W2754252319, https://openalex.org/W2056277721, https://openalex.org/W3188529979, https://openalex.org/W3005289256, https://openalex.org/W4200379090, https://openalex.org/W1169076056, https://openalex.org/W2570350116, https://openalex.org/W2562403923, https://openalex.org/W2885195348, https://openalex.org/W6677448871, https://openalex.org/W6783889047, https://openalex.org/W3199933288, https://openalex.org/W2972291529, https://openalex.org/W2861326824, https://openalex.org/W2946038451, https://openalex.org/W3008571545, https://openalex.org/W3134378022, https://openalex.org/W2802491896, https://openalex.org/W2070377069, https://openalex.org/W6633291773, https://openalex.org/W6783674572, https://openalex.org/W2944851425, https://openalex.org/W3014692329, https://openalex.org/W6773796372, https://openalex.org/W2994830379, https://openalex.org/W4251558360, https://openalex.org/W4244287657, https://openalex.org/W3091873932, https://openalex.org/W1522301498 |
| referenced_works_count | 49 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5051284836 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210122543 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.93787636 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |