Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1155/2015/185726
The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2015/185726
- https://downloads.hindawi.com/journals/cmmm/2015/185726.pdf
- OA Status
- hybrid
- Cited By
- 14
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2084404353
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2084404353Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2015/185726Digital Object Identifier
- Title
-
Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Hui Liu, Caiming Zhang, Zhiyuan Su, Kai Wang, Kai DengList of authors in order
- Landing page
-
https://doi.org/10.1155/2015/185726Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/cmmm/2015/185726.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/cmmm/2015/185726.pdfDirect OA link when available
- Concepts
-
Segmentation, Pixel, Artificial intelligence, Pattern recognition (psychology), Cluster analysis, Computer science, Image segmentation, Grayscale, Computer vision, Similarity (geometry), Ground-glass opacity, Fuzzy logic, Computer-aided diagnosis, Image (mathematics), Cancer, Medicine, Internal medicine, AdenocarcinomaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 2, 2020: 5, 2019: 1, 2018: 2Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2084404353 |
|---|---|
| doi | https://doi.org/10.1155/2015/185726 |
| ids.doi | https://doi.org/10.1155/2015/185726 |
| ids.mag | 2084404353 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/25945120 |
| ids.openalex | https://openalex.org/W2084404353 |
| fwci | 1.35322801 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016000 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Cluster Analysis |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016208 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Databases, Factual |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D003936 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Diagnosis, Computer-Assisted |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D055088 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Early Detection of Cancer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D017143 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Fuzzy Logic |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D007091 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Image Processing, Computer-Assisted |
| mesh[8].qualifier_ui | Q000098 |
| mesh[8].descriptor_ui | D008168 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | blood supply |
| mesh[8].descriptor_name | Lung |
| mesh[9].qualifier_ui | Q000175 |
| mesh[9].descriptor_ui | D008175 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | diagnosis |
| mesh[9].descriptor_name | Lung Neoplasms |
| mesh[10].qualifier_ui | Q000000981 |
| mesh[10].descriptor_ui | D008175 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | diagnostic imaging |
| mesh[10].descriptor_name | Lung Neoplasms |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D015233 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Models, Statistical |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D011857 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[13].qualifier_ui | Q000175 |
| mesh[13].descriptor_ui | D003074 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | diagnosis |
| mesh[13].descriptor_name | Solitary Pulmonary Nodule |
| mesh[14].qualifier_ui | Q000000981 |
| mesh[14].descriptor_ui | D003074 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | diagnostic imaging |
| mesh[14].descriptor_name | Solitary Pulmonary Nodule |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D014057 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Tomography, X-Ray Computed |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000465 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Algorithms |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016000 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Cluster Analysis |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D016208 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Databases, Factual |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D003936 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Diagnosis, Computer-Assisted |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D055088 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Early Detection of Cancer |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D017143 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Fuzzy Logic |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D006801 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Humans |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D007091 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Image Processing, Computer-Assisted |
| mesh[24].qualifier_ui | Q000098 |
| mesh[24].descriptor_ui | D008168 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | blood supply |
| mesh[24].descriptor_name | Lung |
| mesh[25].qualifier_ui | Q000175 |
| mesh[25].descriptor_ui | D008175 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | diagnosis |
| mesh[25].descriptor_name | Lung Neoplasms |
| mesh[26].qualifier_ui | Q000000981 |
| mesh[26].descriptor_ui | D008175 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | diagnostic imaging |
| mesh[26].descriptor_name | Lung Neoplasms |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D015233 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Models, Statistical |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D011857 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[29].qualifier_ui | Q000175 |
| mesh[29].descriptor_ui | D003074 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | diagnosis |
| mesh[29].descriptor_name | Solitary Pulmonary Nodule |
| mesh[30].qualifier_ui | Q000000981 |
| mesh[30].descriptor_ui | D003074 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | diagnostic imaging |
| mesh[30].descriptor_name | Solitary Pulmonary Nodule |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D014057 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Tomography, X-Ray Computed |
| type | article |
| title | Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification |
| biblio.issue | |
| biblio.volume | 2015 |
| biblio.last_page | 14 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9954000115394592 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10202 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9937000274658203 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Lung Cancer Diagnosis and Treatment |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9771999716758728 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7186231017112732 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C160633673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.708013653755188 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[1].display_name | Pixel |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6648837924003601 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6027358770370483 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5792709589004517 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5579793453216553 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C124504099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.546235203742981 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[6].display_name | Image segmentation |
| concepts[7].id | https://openalex.org/C78201319 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5296972393989563 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q685727 |
| concepts[7].display_name | Grayscale |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4806074798107147 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C103278499 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4730205535888672 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[9].display_name | Similarity (geometry) |
| concepts[10].id | https://openalex.org/C2777001051 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4692777395248413 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3150728 |
| concepts[10].display_name | Ground-glass opacity |
| concepts[11].id | https://openalex.org/C58166 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45570501685142517 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[11].display_name | Fuzzy logic |
| concepts[12].id | https://openalex.org/C2779549770 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4209689497947693 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1122413 |
| concepts[12].display_name | Computer-aided diagnosis |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.28077930212020874 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C121608353 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1596318483352661 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[14].display_name | Cancer |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1322801113128662 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C126322002 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[16].display_name | Internal medicine |
| concepts[17].id | https://openalex.org/C2781182431 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q356033 |
| concepts[17].display_name | Adenocarcinoma |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7186231017112732 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/pixel |
| keywords[1].score | 0.708013653755188 |
| keywords[1].display_name | Pixel |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6648837924003601 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6027358770370483 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.5792709589004517 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5579793453216553 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/image-segmentation |
| keywords[6].score | 0.546235203742981 |
| keywords[6].display_name | Image segmentation |
| keywords[7].id | https://openalex.org/keywords/grayscale |
| keywords[7].score | 0.5296972393989563 |
| keywords[7].display_name | Grayscale |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4806074798107147 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/similarity |
| keywords[9].score | 0.4730205535888672 |
| keywords[9].display_name | Similarity (geometry) |
| keywords[10].id | https://openalex.org/keywords/ground-glass-opacity |
| keywords[10].score | 0.4692777395248413 |
| keywords[10].display_name | Ground-glass opacity |
| keywords[11].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[11].score | 0.45570501685142517 |
| keywords[11].display_name | Fuzzy logic |
| keywords[12].id | https://openalex.org/keywords/computer-aided-diagnosis |
| keywords[12].score | 0.4209689497947693 |
| keywords[12].display_name | Computer-aided diagnosis |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.28077930212020874 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/cancer |
| keywords[14].score | 0.1596318483352661 |
| keywords[14].display_name | Cancer |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.1322801113128662 |
| keywords[15].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1155/2015/185726 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36980176 |
| locations[0].source.issn | 1748-670X, 1748-6718 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1748-670X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computational and Mathematical Methods in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/cmmm/2015/185726.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational and Mathematical Methods in Medicine |
| locations[0].landing_page_url | https://doi.org/10.1155/2015/185726 |
| locations[1].id | pmid:25945120 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computational and mathematical methods in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/25945120 |
| locations[2].id | pmh:oai:doaj.org/article:1746f8aee07b46649049c617d196d6e5 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Computational and Mathematical Methods in Medicine, Vol 2015 (2015) |
| locations[2].landing_page_url | https://doaj.org/article/1746f8aee07b46649049c617d196d6e5 |
| locations[3].id | pmh:oai:europepmc.org:3383763 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/4405023 |
| locations[4].id | pmh:oai:osti.gov:1626225 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306402487 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[4].source.host_organization | https://openalex.org/I139351228 |
| locations[4].source.host_organization_name | Office of Scientific and Technical Information |
| locations[4].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://www.osti.gov/biblio/1626225 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:4405023 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | cc-by |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/cc-by |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | http://doi.org/10.1155/2015/185726 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101725144 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1789-4616 |
| authorships[0].author.display_name | Hui Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59483232 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China |
| authorships[0].affiliations[1].raw_affiliation_string | Digital Media Technology Key Lab of Shandong Province, Jinan 250014, China |
| authorships[0].institutions[0].id | https://openalex.org/I59483232 |
| authorships[0].institutions[0].ror | https://ror.org/02e2nnq08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59483232 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong University of Finance and Economics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hui Liu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Digital Media Technology Key Lab of Shandong Province, Jinan 250014, China, School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China |
| authorships[1].author.id | https://openalex.org/A5101753050 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0217-1543 |
| authorships[1].author.display_name | Caiming Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Digital Media Technology Key Lab of Shandong Province, Jinan 250014, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I59483232 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China |
| authorships[1].institutions[0].id | https://openalex.org/I59483232 |
| authorships[1].institutions[0].ror | https://ror.org/02e2nnq08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59483232 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong University of Finance and Economics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cai-Ming Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Digital Media Technology Key Lab of Shandong Province, Jinan 250014, China, School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China |
| authorships[2].author.id | https://openalex.org/A5030246181 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0316-1841 |
| authorships[2].author.display_name | Zhiyuan Su |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I59483232 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China |
| authorships[2].affiliations[1].raw_affiliation_string | Digital Media Technology Key Lab of Shandong Province, Jinan 250014, China |
| authorships[2].institutions[0].id | https://openalex.org/I59483232 |
| authorships[2].institutions[0].ror | https://ror.org/02e2nnq08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I59483232 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shandong University of Finance and Economics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhi-Yuan Su |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Digital Media Technology Key Lab of Shandong Province, Jinan 250014, China, School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China |
| authorships[3].author.id | https://openalex.org/A5100437102 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2155-1445 |
| authorships[3].author.display_name | Kai Wang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I148283060, https://openalex.org/I95457486 |
| authorships[3].affiliations[0].raw_affiliation_string | Lawrence Berkeley National Lab, University of California, Berkeley, CA 94720, USA |
| authorships[3].institutions[0].id | https://openalex.org/I148283060 |
| authorships[3].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[3].institutions[1].id | https://openalex.org/I95457486 |
| authorships[3].institutions[1].ror | https://ror.org/01an7q238 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I95457486 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of California, Berkeley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kai Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Lawrence Berkeley National Lab, University of California, Berkeley, CA 94720, USA |
| authorships[4].author.id | https://openalex.org/A5101428460 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4753-8564 |
| authorships[4].author.display_name | Kai Deng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210153274 |
| authorships[4].affiliations[0].raw_affiliation_string | Respiratory Department, Shandong Provincial Qianfoshan Hospital, Jinan 250014, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210153274 |
| authorships[4].institutions[0].ror | https://ror.org/03wnrsb51 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210153274 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shandong Provincial QianFoShan Hospital |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kai Deng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Respiratory Department, Shandong Provincial Qianfoshan Hospital, Jinan 250014, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/cmmm/2015/185726.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9954000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W115686965, https://openalex.org/W2768918307, https://openalex.org/W2040020606, https://openalex.org/W2110031805, https://openalex.org/W2113071088, https://openalex.org/W2321543601, https://openalex.org/W1691631808, https://openalex.org/W1586320973, https://openalex.org/W9205621, https://openalex.org/W2566620708 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2017 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2016 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 6 |
| best_oa_location.id | doi:10.1155/2015/185726 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36980176 |
| best_oa_location.source.issn | 1748-670X, 1748-6718 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1748-670X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computational and Mathematical Methods in Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/cmmm/2015/185726.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational and Mathematical Methods in Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2015/185726 |
| primary_location.id | doi:10.1155/2015/185726 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36980176 |
| primary_location.source.issn | 1748-670X, 1748-6718 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1748-670X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computational and Mathematical Methods in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/cmmm/2015/185726.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational and Mathematical Methods in Medicine |
| primary_location.landing_page_url | https://doi.org/10.1155/2015/185726 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2016895718, https://openalex.org/W2141619730, https://openalex.org/W2000218292, https://openalex.org/W2118867739, https://openalex.org/W2078628467, https://openalex.org/W2071672025, https://openalex.org/W1972540344, https://openalex.org/W2132014319, https://openalex.org/W1986060521, https://openalex.org/W1966399991, https://openalex.org/W2119300483, https://openalex.org/W2115560616, https://openalex.org/W1973880112, https://openalex.org/W2115242586, https://openalex.org/W2108859253, https://openalex.org/W1992147426, https://openalex.org/W2165012164, https://openalex.org/W4255793874, https://openalex.org/W1986649315, https://openalex.org/W1994439988, https://openalex.org/W218592382, https://openalex.org/W1589895371, https://openalex.org/W2113076747 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 30, 40 |
| abstract_inverted_index.As | 19 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 3, 7, 25, 42, 86, 101 |
| abstract_inverted_index.on | 39 |
| abstract_inverted_index.to | 11, 54 |
| abstract_inverted_index.we | 28 |
| abstract_inverted_index.FCM | 43 |
| abstract_inverted_index.The | 0, 48 |
| abstract_inverted_index.and | 17, 32, 45, 65, 69, 76, 78, 84, 106 |
| abstract_inverted_index.are | 22 |
| abstract_inverted_index.can | 96 |
| abstract_inverted_index.key | 1 |
| abstract_inverted_index.the | 59, 70, 81, 87, 93 |
| abstract_inverted_index.both | 58 |
| abstract_inverted_index.fast | 16, 31 |
| abstract_inverted_index.from | 57 |
| abstract_inverted_index.lung | 8, 26 |
| abstract_inverted_index.more | 98 |
| abstract_inverted_index.rate | 83 |
| abstract_inverted_index.show | 91 |
| abstract_inverted_index.than | 113 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.(CAD) | 6 |
| abstract_inverted_index.(GGO) | 110 |
| abstract_inverted_index.based | 38 |
| abstract_inverted_index.fuzzy | 55 |
| abstract_inverted_index.glass | 108 |
| abstract_inverted_index.other | 114 |
| abstract_inverted_index.cancer | 9 |
| abstract_inverted_index.ground | 107 |
| abstract_inverted_index.method | 37, 95 |
| abstract_inverted_index.pixels | 64, 68, 75 |
| abstract_inverted_index.single | 66 |
| abstract_inverted_index.achieve | 97 |
| abstract_inverted_index.between | 62, 73 |
| abstract_inverted_index.cancer, | 27 |
| abstract_inverted_index.central | 63, 74 |
| abstract_inverted_index.changed | 14 |
| abstract_inverted_index.nodules | 21, 35, 112 |
| abstract_inverted_index.opacity | 109 |
| abstract_inverted_index.pleural | 104 |
| abstract_inverted_index.problem | 2 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.results | 90 |
| abstract_inverted_index.segment | 12 |
| abstract_inverted_index.spatial | 50, 71 |
| abstract_inverted_index.tissues | 15 |
| abstract_inverted_index.typical | 115 |
| abstract_inverted_index.accurate | 99 |
| abstract_inverted_index.enhanced | 49 |
| abstract_inverted_index.function | 51 |
| abstract_inverted_index.improves | 79 |
| abstract_inverted_index.proposed | 94 |
| abstract_inverted_index.vascular | 102 |
| abstract_inverted_index.adhesion, | 103, 105 |
| abstract_inverted_index.considers | 52 |
| abstract_inverted_index.diagnosis | 5 |
| abstract_inverted_index.grayscale | 60 |
| abstract_inverted_index.learning. | 47 |
| abstract_inverted_index.potential | 23 |
| abstract_inverted_index.pulmonary | 20, 34, 111 |
| abstract_inverted_index.algorithm. | 88 |
| abstract_inverted_index.clustering | 44 |
| abstract_inverted_index.membership | 56 |
| abstract_inverted_index.similarity | 61, 72 |
| abstract_inverted_index.accurately. | 18 |
| abstract_inverted_index.algorithms. | 116 |
| abstract_inverted_index.combination | 41 |
| abstract_inverted_index.convergence | 82 |
| abstract_inverted_index.effectively | 80 |
| abstract_inverted_index.neighboring | 67 |
| abstract_inverted_index.Experimental | 89 |
| abstract_inverted_index.neighborhood | 77 |
| abstract_inverted_index.segmentation | 36, 100 |
| abstract_inverted_index.contributions | 53 |
| abstract_inverted_index.manifestation | 24 |
| abstract_inverted_index.self-adaptive | 33 |
| abstract_inverted_index.classification | 46 |
| abstract_inverted_index.computer-aided | 4 |
| abstract_inverted_index.pathologically | 13 |
| abstract_inverted_index.self-adaptivity | 85 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101725144 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I59483232 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.80427542 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |