Research on acoustic methods for buried PE pipeline detection based on LSTM neural networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1361-6501/ad4dcd
As an essential component of urban infrastructure construction, polyethylene (PE) pipelines face the challenging task of underground detection due to the complex and dynamic nature of the subsurface environment, diverse installation paths, and the inherent insulating properties of PE materials. In order to address the non-excavation detection of buried PE pipelines, this paper proposes an acoustic method based on the long short-term memory (LSTM) neural network. The study begins by analyzing the propagation and reflection mechanisms of elastic waves in the pipe-soil coupling system, and a impact excitation source is designed to generate the excitation signal. After establishing the experimental environment and collecting experimental data, a comprehensive analysis is conducted, and the LSTM neural network is employed for data classification to determine the presence of buried PE pipelines. Through neural network training, accurate identification of the PE pipeline’s existence and prediction of its burial depth are achieved, providing an efficient and reliable solution for buried PE pipeline detection. The practical results demonstrate the significant application prospects of the combined acoustic method and LSTM neural network in buried PE pipeline detection. This research contributes a novel solution to the field of non-destructive PE pipeline detection, with both theoretical and practical implications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1361-6501/ad4dcd
- OA Status
- hybrid
- Cited By
- 4
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398144843
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398144843Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1361-6501/ad4dcdDigital Object Identifier
- Title
-
Research on acoustic methods for buried PE pipeline detection based on LSTM neural networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-20Full publication date if available
- Authors
-
Yongsheng Qi, Xinhua Wang, Xuyun Yang, Tao Sun, Izzat Razzaq, Lin F. Yang, Yuexin Wang, Ghulam RasoolList of authors in order
- Landing page
-
https://doi.org/10.1088/1361-6501/ad4dcdPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1361-6501/ad4dcdDirect OA link when available
- Concepts
-
Pipeline (software), Artificial neural network, Computer science, Deep neural networks, Artificial intelligence, Speech recognition, Pattern recognition (psychology), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398144843 |
|---|---|
| doi | https://doi.org/10.1088/1361-6501/ad4dcd |
| ids.doi | https://doi.org/10.1088/1361-6501/ad4dcd |
| ids.openalex | https://openalex.org/W4398144843 |
| fwci | 1.96375866 |
| type | article |
| title | Research on acoustic methods for buried PE pipeline detection based on LSTM neural networks |
| awards[0].id | https://openalex.org/G6270901264 |
| awards[0].funder_id | https://openalex.org/F4320325902 |
| awards[0].display_name | |
| awards[0].funder_award_id | Z231100006023011 |
| awards[0].funder_display_name | Beijing Municipal Science and Technology Commission |
| biblio.issue | 9 |
| biblio.volume | 35 |
| biblio.last_page | 096001 |
| biblio.first_page | 096001 |
| topics[0].id | https://openalex.org/T11220 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Water Systems and Optimization |
| topics[1].id | https://openalex.org/T11609 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9925000071525574 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Geophysical Methods and Applications |
| topics[2].id | https://openalex.org/T12233 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Geotechnical Engineering and Underground Structures |
| funders[0].id | https://openalex.org/F4320325902 |
| funders[0].ror | |
| funders[0].display_name | Beijing Municipal Science and Technology Commission |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C43521106 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7605283856391907 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[0].display_name | Pipeline (software) |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6802871227264404 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6356503367424011 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2984842247 |
| concepts[3].level | 3 |
| concepts[3].score | 0.43502071499824524 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep neural networks |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.41989463567733765 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C28490314 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36346352100372314 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[5].display_name | Speech recognition |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.36248138546943665 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/pipeline |
| keywords[0].score | 0.7605283856391907 |
| keywords[0].display_name | Pipeline (software) |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6802871227264404 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6356503367424011 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[3].score | 0.43502071499824524 |
| keywords[3].display_name | Deep neural networks |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.41989463567733765 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/speech-recognition |
| keywords[5].score | 0.36346352100372314 |
| keywords[5].display_name | Speech recognition |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.36248138546943665 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1088/1361-6501/ad4dcd |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S109302362 |
| locations[0].source.issn | 0957-0233, 1361-6501 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0957-0233 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Measurement Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Measurement Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/1361-6501/ad4dcd |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5050053449 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-8462-2523 |
| authorships[0].author.display_name | Yongsheng Qi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing University of Technology, Beijing University of Technology, Chaoyang District, Beijing, Beijing, 100124, CHINA |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongsheng Qi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing University of Technology, Beijing University of Technology, Chaoyang District, Beijing, Beijing, 100124, CHINA |
| authorships[1].author.id | https://openalex.org/A5100395840 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2954-7259 |
| authorships[1].author.display_name | Xinhua Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinhua Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[2].author.id | https://openalex.org/A5035678816 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6265-2678 |
| authorships[2].author.display_name | Xuyun Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210112488 |
| authorships[2].affiliations[0].raw_affiliation_string | China Special Equipment Inspection and Research Institute, Beijing, Beijing, 100029, CHINA |
| authorships[2].institutions[0].id | https://openalex.org/I4210112488 |
| authorships[2].institutions[0].ror | https://ror.org/01fmwwp26 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210112488 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Special Equipment Inspection and Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xuyun Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | China Special Equipment Inspection and Research Institute, Beijing, Beijing, 100029, CHINA |
| authorships[3].author.id | https://openalex.org/A5003702556 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0397-8069 |
| authorships[3].author.display_name | Tao Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[3].institutions[0].id | https://openalex.org/I37796252 |
| authorships[3].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tao Sun |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[4].author.id | https://openalex.org/A5093011139 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-7308-0212 |
| authorships[4].author.display_name | Izzat Razzaq |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[4].affiliations[0].raw_affiliation_string | Material and manufacturing, Beijing University of Technology, Beijing University of Technology, CHaoyang , Beijing China, Beijing, 100124, CHINA |
| authorships[4].institutions[0].id | https://openalex.org/I37796252 |
| authorships[4].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Izzat Razzaq |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Material and manufacturing, Beijing University of Technology, Beijing University of Technology, CHaoyang , Beijing China, Beijing, 100124, CHINA |
| authorships[5].author.id | https://openalex.org/A5072096775 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4602-3366 |
| authorships[5].author.display_name | Lin F. Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[5].affiliations[0].raw_affiliation_string | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[5].institutions[0].id | https://openalex.org/I37796252 |
| authorships[5].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lin Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[6].author.id | https://openalex.org/A5041767329 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9499-6923 |
| authorships[6].author.display_name | Yuexin Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[6].affiliations[0].raw_affiliation_string | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[6].institutions[0].id | https://openalex.org/I37796252 |
| authorships[6].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Beijing University of Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yuexin Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[7].author.id | https://openalex.org/A5025599076 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5880-9553 |
| authorships[7].author.display_name | Ghulam Rasool |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[7].affiliations[0].raw_affiliation_string | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| authorships[7].institutions[0].id | https://openalex.org/I37796252 |
| authorships[7].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Beijing University of Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ghulam Rasool |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Beijing University of Technology, Beijing University of Technology, Beijing, 100124, CHINA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1361-6501/ad4dcd |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on acoustic methods for buried PE pipeline detection based on LSTM neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11220 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Water Systems and Optimization |
| related_works | https://openalex.org/W3037187668, https://openalex.org/W4234772502, https://openalex.org/W2380685755, https://openalex.org/W2252100032, https://openalex.org/W2963436428, https://openalex.org/W2734796617, https://openalex.org/W3083218341, https://openalex.org/W2102405864, https://openalex.org/W3034087822, https://openalex.org/W2477982797 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1361-6501/ad4dcd |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S109302362 |
| best_oa_location.source.issn | 0957-0233, 1361-6501 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0957-0233 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Measurement Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Measurement Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1361-6501/ad4dcd |
| primary_location.id | doi:10.1088/1361-6501/ad4dcd |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S109302362 |
| primary_location.source.issn | 0957-0233, 1361-6501 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0957-0233 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Measurement Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Measurement Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/1361-6501/ad4dcd |
| publication_date | 2024-05-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3110649231, https://openalex.org/W3191853485, https://openalex.org/W3086231134, https://openalex.org/W4224224283, https://openalex.org/W2322925303, https://openalex.org/W1569383561, https://openalex.org/W2118584406, https://openalex.org/W2020474706, https://openalex.org/W1993189361, https://openalex.org/W1987624847, https://openalex.org/W1988060033, https://openalex.org/W4391618364, https://openalex.org/W4387869375, https://openalex.org/W4385457450, https://openalex.org/W2936131980, https://openalex.org/W4365143768, https://openalex.org/W4283072848, https://openalex.org/W2077157121, https://openalex.org/W2064675550, https://openalex.org/W3150186642, https://openalex.org/W3024761859, https://openalex.org/W2884001105, https://openalex.org/W2970252335, https://openalex.org/W3095598260, https://openalex.org/W1689711448, https://openalex.org/W3046711798, https://openalex.org/W4302759759, https://openalex.org/W4205164062, https://openalex.org/W4384080276, https://openalex.org/W3085738355, https://openalex.org/W4381332746, https://openalex.org/W3124089887, https://openalex.org/W2532118868 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 86, 106, 184 |
| abstract_inverted_index.As | 1 |
| abstract_inverted_index.In | 41 |
| abstract_inverted_index.PE | 39, 50, 127, 137, 156, 178, 192 |
| abstract_inverted_index.an | 2, 55, 149 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.in | 80, 176 |
| abstract_inverted_index.is | 90, 109, 116 |
| abstract_inverted_index.of | 5, 16, 26, 38, 48, 77, 125, 135, 142, 167, 190 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.to | 20, 43, 92, 121, 187 |
| abstract_inverted_index.The | 67, 159 |
| abstract_inverted_index.and | 23, 33, 74, 85, 102, 111, 140, 151, 172, 198 |
| abstract_inverted_index.are | 146 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.for | 118, 154 |
| abstract_inverted_index.its | 143 |
| abstract_inverted_index.the | 13, 21, 27, 34, 45, 60, 72, 81, 94, 99, 112, 123, 136, 163, 168, 188 |
| abstract_inverted_index.(PE) | 10 |
| abstract_inverted_index.LSTM | 113, 173 |
| abstract_inverted_index.This | 181 |
| abstract_inverted_index.both | 196 |
| abstract_inverted_index.data | 119 |
| abstract_inverted_index.face | 12 |
| abstract_inverted_index.long | 61 |
| abstract_inverted_index.task | 15 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.with | 195 |
| abstract_inverted_index.After | 97 |
| abstract_inverted_index.based | 58 |
| abstract_inverted_index.data, | 105 |
| abstract_inverted_index.depth | 145 |
| abstract_inverted_index.field | 189 |
| abstract_inverted_index.novel | 185 |
| abstract_inverted_index.order | 42 |
| abstract_inverted_index.paper | 53 |
| abstract_inverted_index.study | 68 |
| abstract_inverted_index.urban | 6 |
| abstract_inverted_index.waves | 79 |
| abstract_inverted_index.(LSTM) | 64 |
| abstract_inverted_index.begins | 69 |
| abstract_inverted_index.burial | 144 |
| abstract_inverted_index.buried | 49, 126, 155, 177 |
| abstract_inverted_index.impact | 87 |
| abstract_inverted_index.memory | 63 |
| abstract_inverted_index.method | 57, 171 |
| abstract_inverted_index.nature | 25 |
| abstract_inverted_index.neural | 65, 114, 130, 174 |
| abstract_inverted_index.paths, | 32 |
| abstract_inverted_index.source | 89 |
| abstract_inverted_index.Through | 129 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.diverse | 30 |
| abstract_inverted_index.dynamic | 24 |
| abstract_inverted_index.elastic | 78 |
| abstract_inverted_index.network | 115, 131, 175 |
| abstract_inverted_index.results | 161 |
| abstract_inverted_index.signal. | 96 |
| abstract_inverted_index.system, | 84 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accurate | 133 |
| abstract_inverted_index.acoustic | 56, 170 |
| abstract_inverted_index.analysis | 108 |
| abstract_inverted_index.combined | 169 |
| abstract_inverted_index.coupling | 83 |
| abstract_inverted_index.designed | 91 |
| abstract_inverted_index.employed | 117 |
| abstract_inverted_index.generate | 93 |
| abstract_inverted_index.inherent | 35 |
| abstract_inverted_index.network. | 66 |
| abstract_inverted_index.pipeline | 157, 179, 193 |
| abstract_inverted_index.presence | 124 |
| abstract_inverted_index.proposes | 54 |
| abstract_inverted_index.reliable | 152 |
| abstract_inverted_index.research | 182 |
| abstract_inverted_index.solution | 153, 186 |
| abstract_inverted_index.achieved, | 147 |
| abstract_inverted_index.analyzing | 71 |
| abstract_inverted_index.component | 4 |
| abstract_inverted_index.detection | 18, 47 |
| abstract_inverted_index.determine | 122 |
| abstract_inverted_index.efficient | 150 |
| abstract_inverted_index.essential | 3 |
| abstract_inverted_index.existence | 139 |
| abstract_inverted_index.pipe-soil | 82 |
| abstract_inverted_index.pipelines | 11 |
| abstract_inverted_index.practical | 160, 199 |
| abstract_inverted_index.prospects | 166 |
| abstract_inverted_index.providing | 148 |
| abstract_inverted_index.training, | 132 |
| abstract_inverted_index.collecting | 103 |
| abstract_inverted_index.conducted, | 110 |
| abstract_inverted_index.detection, | 194 |
| abstract_inverted_index.detection. | 158, 180 |
| abstract_inverted_index.excitation | 88, 95 |
| abstract_inverted_index.insulating | 36 |
| abstract_inverted_index.materials. | 40 |
| abstract_inverted_index.mechanisms | 76 |
| abstract_inverted_index.pipelines, | 51 |
| abstract_inverted_index.pipelines. | 128 |
| abstract_inverted_index.prediction | 141 |
| abstract_inverted_index.properties | 37 |
| abstract_inverted_index.reflection | 75 |
| abstract_inverted_index.short-term | 62 |
| abstract_inverted_index.subsurface | 28 |
| abstract_inverted_index.application | 165 |
| abstract_inverted_index.challenging | 14 |
| abstract_inverted_index.contributes | 183 |
| abstract_inverted_index.demonstrate | 162 |
| abstract_inverted_index.environment | 101 |
| abstract_inverted_index.propagation | 73 |
| abstract_inverted_index.significant | 164 |
| abstract_inverted_index.theoretical | 197 |
| abstract_inverted_index.underground | 17 |
| abstract_inverted_index.environment, | 29 |
| abstract_inverted_index.establishing | 98 |
| abstract_inverted_index.experimental | 100, 104 |
| abstract_inverted_index.installation | 31 |
| abstract_inverted_index.pipeline’s | 138 |
| abstract_inverted_index.polyethylene | 9 |
| abstract_inverted_index.comprehensive | 107 |
| abstract_inverted_index.construction, | 8 |
| abstract_inverted_index.implications. | 200 |
| abstract_inverted_index.classification | 120 |
| abstract_inverted_index.identification | 134 |
| abstract_inverted_index.infrastructure | 7 |
| abstract_inverted_index.non-excavation | 46 |
| abstract_inverted_index.non-destructive | 191 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5003702556 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I37796252 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.78095475 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |