Research on airspace filtering algorithm for trackside train bearings based on GSC-MVDR Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2842/1/012090
Trackside Acoustic Detection Systems (TADS) employ microphone arrays installed on both sides of the railway tracks to collect sound signals emitted by wheelset bearings as trains pass by. These systems facilitate state monitoring and fault diagnosis through signal processing, offering capabilities such as non-contact measurement, low cost, and early warning of potential failures. However, the strong noise characteristics of trackside signals significantly impair diagnostic precision. To address this issue, this paper proposes a spatial filtering algorithm based on the Minimum Variance Distortion-less Response (MVDR) and the Generalized Sidelobe Canceller (GSC), achieving directional denoising. Additionally, the algorithm employs time-domain resampling techniques to correct the Doppler effect in signals.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.1088/1742-6596/2842/1/012090
- OA Status
- diamond
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402746885
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402746885Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2842/1/012090Digital Object Identifier
- Title
-
Research on airspace filtering algorithm for trackside train bearings based on GSC-MVDRWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-01Full publication date if available
- Authors
-
Ziyu Yuan, Fang Liu, Xuewen Bao, Guangwen Ren, Guo‐Qiang Zeng, Yongbin LiuList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2842/1/012090Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/2842/1/012090Direct OA link when available
- Concepts
-
Computer science, Aeronautics, Algorithm, Speech recognition, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402746885 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2842/1/012090 |
| ids.doi | https://doi.org/10.1088/1742-6596/2842/1/012090 |
| ids.openalex | https://openalex.org/W4402746885 |
| fwci | 0.0 |
| type | article |
| title | Research on airspace filtering algorithm for trackside train bearings based on GSC-MVDR |
| biblio.issue | 1 |
| biblio.volume | 2842 |
| biblio.last_page | 012090 |
| biblio.first_page | 012090 |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9830999970436096 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9825999736785889 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Machine Fault Diagnosis Techniques |
| topics[2].id | https://openalex.org/T10805 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9650999903678894 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Vehicle Dynamics and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.522335410118103 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C178802073 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5147526264190674 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8421 |
| concepts[1].display_name | Aeronautics |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5049524903297424 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3337165117263794 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.29608526825904846 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.522335410118103 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/aeronautics |
| keywords[1].score | 0.5147526264190674 |
| keywords[1].display_name | Aeronautics |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.5049524903297424 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.3337165117263794 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.29608526825904846 |
| keywords[4].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2842/1/012090 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | http://doi.org/10.1088/1742-6596/2842/1/012090 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5111221183 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ziyu Yuan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziyu Yuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100453006 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5625-2969 |
| authorships[1].author.display_name | Fang Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fang Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111337372 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xuewen Bao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xuewen Bao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5111337373 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Guangwen Ren |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guangwen Ren |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046775963 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7453-7420 |
| authorships[4].author.display_name | Guo‐Qiang Zeng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guoqiang Zeng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101666118 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3420-3784 |
| authorships[5].author.display_name | Yongbin Liu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yongbin Liu |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.1088/1742-6596/2842/1/012090 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on airspace filtering algorithm for trackside train bearings based on GSC-MVDR |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9830999970436096 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2842/1/012090 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | http://doi.org/10.1088/1742-6596/2842/1/012090 |
| primary_location.id | doi:10.1088/1742-6596/2842/1/012090 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | http://doi.org/10.1088/1742-6596/2842/1/012090 |
| publication_date | 2024-09-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3126545460, https://openalex.org/W2060293515, https://openalex.org/W4281853301, https://openalex.org/W2953916325 |
| referenced_works_count | 4 |
| abstract_inverted_index.a | 73 |
| abstract_inverted_index.To | 66 |
| abstract_inverted_index.as | 25, 43 |
| abstract_inverted_index.by | 22 |
| abstract_inverted_index.in | 106 |
| abstract_inverted_index.of | 13, 51, 59 |
| abstract_inverted_index.on | 10, 78 |
| abstract_inverted_index.to | 17, 101 |
| abstract_inverted_index.and | 34, 48, 85 |
| abstract_inverted_index.by. | 28 |
| abstract_inverted_index.low | 46 |
| abstract_inverted_index.the | 14, 55, 79, 86, 95, 103 |
| abstract_inverted_index.both | 11 |
| abstract_inverted_index.pass | 27 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.this | 68, 70 |
| abstract_inverted_index.These | 29 |
| abstract_inverted_index.based | 77 |
| abstract_inverted_index.cost, | 47 |
| abstract_inverted_index.early | 49 |
| abstract_inverted_index.fault | 35 |
| abstract_inverted_index.noise | 57 |
| abstract_inverted_index.paper | 71 |
| abstract_inverted_index.sides | 12 |
| abstract_inverted_index.sound | 19 |
| abstract_inverted_index.state | 32 |
| abstract_inverted_index.(GSC), | 90 |
| abstract_inverted_index.(MVDR) | 84 |
| abstract_inverted_index.(TADS) | 5 |
| abstract_inverted_index.arrays | 8 |
| abstract_inverted_index.effect | 105 |
| abstract_inverted_index.employ | 6 |
| abstract_inverted_index.impair | 63 |
| abstract_inverted_index.issue, | 69 |
| abstract_inverted_index.signal | 38 |
| abstract_inverted_index.strong | 56 |
| abstract_inverted_index.tracks | 16 |
| abstract_inverted_index.trains | 26 |
| abstract_inverted_index.Doppler | 104 |
| abstract_inverted_index.Minimum | 80 |
| abstract_inverted_index.Systems | 4 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.collect | 18 |
| abstract_inverted_index.correct | 102 |
| abstract_inverted_index.emitted | 21 |
| abstract_inverted_index.employs | 97 |
| abstract_inverted_index.railway | 15 |
| abstract_inverted_index.signals | 20, 61 |
| abstract_inverted_index.spatial | 74 |
| abstract_inverted_index.systems | 30 |
| abstract_inverted_index.through | 37 |
| abstract_inverted_index.warning | 50 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Acoustic | 2 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.Response | 83 |
| abstract_inverted_index.Sidelobe | 88 |
| abstract_inverted_index.Variance | 81 |
| abstract_inverted_index.bearings | 24 |
| abstract_inverted_index.offering | 40 |
| abstract_inverted_index.proposes | 72 |
| abstract_inverted_index.signals. | 107 |
| abstract_inverted_index.wheelset | 23 |
| abstract_inverted_index.Canceller | 89 |
| abstract_inverted_index.Detection | 3 |
| abstract_inverted_index.Trackside | 1 |
| abstract_inverted_index.achieving | 91 |
| abstract_inverted_index.algorithm | 76, 96 |
| abstract_inverted_index.diagnosis | 36 |
| abstract_inverted_index.failures. | 53 |
| abstract_inverted_index.filtering | 75 |
| abstract_inverted_index.installed | 9 |
| abstract_inverted_index.potential | 52 |
| abstract_inverted_index.trackside | 60 |
| abstract_inverted_index.denoising. | 93 |
| abstract_inverted_index.diagnostic | 64 |
| abstract_inverted_index.facilitate | 31 |
| abstract_inverted_index.microphone | 7 |
| abstract_inverted_index.monitoring | 33 |
| abstract_inverted_index.precision. | 65 |
| abstract_inverted_index.resampling | 99 |
| abstract_inverted_index.techniques | 100 |
| abstract_inverted_index.Generalized | 87 |
| abstract_inverted_index.directional | 92 |
| abstract_inverted_index.non-contact | 44 |
| abstract_inverted_index.processing, | 39 |
| abstract_inverted_index.time-domain | 98 |
| abstract_inverted_index.capabilities | 41 |
| abstract_inverted_index.measurement, | 45 |
| abstract_inverted_index.Additionally, | 94 |
| abstract_inverted_index.significantly | 62 |
| abstract_inverted_index.Distortion-less | 82 |
| abstract_inverted_index.characteristics | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.20744734 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |