Research on Board Game Strategy Methods Based on Reinforcement Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.54254/2755-2721/2025.po24698
As a typical sequential decision-making and gaming problem, board games have the complexity of large state space and strong dynamic confrontation, however, traditional methods have many limitations in dealing with them, so they need to be based on reinforcement learning to achieve strategy optimization by virtue of data-driven. Reinforcement learning can promote the realization of AI decision-making ability from rule-dependent to data-driven leap, and show significant advantages in game AI. This paper systematically sorts out the core algorithms of reinforcement learning in board games, comparatively analyzes their technical characteristics, applicable scenarios, advantages and disadvantages, discusses the current technical bottlenecks and ethical challenges, and look forward to the future development direction. This paper concludes that reinforcement learning is effective in board games, which not only helps AIs such as AlphaGo and Libratus to surpass the human level in Go, Texas Hold'em and other scenarios, but also forms the transition from model-dependent to data-driven, From model-dependent to data-driven, and from single-intelligence to multi-intelligence, it has also formed a technological evolution vein. At the same time, reinforcement learning has been breaking through in processing high-dimensional states, complex reward functions, etc., and has shown the potential of generalization in the fields of education, healthcare, etc. [1]. This paper can provide theoretical references and practical guidance for subsequent AI research on board games, as well as a universal methodology for complex decision-making problems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54254/2755-2721/2025.po24698
- https://www.ewadirect.com/proceedings/ace/article/view/24698/pdf
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411989149
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411989149Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54254/2755-2721/2025.po24698Digital Object Identifier
- Title
-
Research on Board Game Strategy Methods Based on Reinforcement LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-03Full publication date if available
- Authors
-
Rong Luo, Bing Yao, Qingwen ZhangList of authors in order
- Landing page
-
https://doi.org/10.54254/2755-2721/2025.po24698Publisher landing page
- PDF URL
-
https://www.ewadirect.com/proceedings/ace/article/view/24698/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ewadirect.com/proceedings/ace/article/view/24698/pdfDirect OA link when available
- Concepts
-
Reinforcement, Reinforcement learning, Computer science, Psychology, Artificial intelligence, Human–computer interaction, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411989149 |
|---|---|
| doi | https://doi.org/10.54254/2755-2721/2025.po24698 |
| ids.doi | https://doi.org/10.54254/2755-2721/2025.po24698 |
| ids.openalex | https://openalex.org/W4411989149 |
| fwci | 0.0 |
| type | article |
| title | Research on Board Game Strategy Methods Based on Reinforcement Learning |
| biblio.issue | 1 |
| biblio.volume | 174 |
| biblio.last_page | 38 |
| biblio.first_page | 32 |
| topics[0].id | https://openalex.org/T13832 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.257099986076355 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Advanced Decision-Making Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C67203356 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6964353919029236 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[0].display_name | Reinforcement |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6548179388046265 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.49327677488327026 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.39231204986572266 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34262460470199585 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32225579023361206 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C77805123 |
| concepts[6].level | 1 |
| concepts[6].score | 0.14210930466651917 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[6].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/reinforcement |
| keywords[0].score | 0.6964353919029236 |
| keywords[0].display_name | Reinforcement |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.6548179388046265 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.49327677488327026 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.39231204986572266 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.34262460470199585 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[5].score | 0.32225579023361206 |
| keywords[5].display_name | Human–computer interaction |
| keywords[6].id | https://openalex.org/keywords/social-psychology |
| keywords[6].score | 0.14210930466651917 |
| keywords[6].display_name | Social psychology |
| language | en |
| locations[0].id | doi:10.54254/2755-2721/2025.po24698 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387281889 |
| locations[0].source.issn | 2755-2721, 2755-273X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2755-2721 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied and Computational Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/24698/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied and Computational Engineering |
| locations[0].landing_page_url | https://doi.org/10.54254/2755-2721/2025.po24698 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5066405314 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5237-1001 |
| authorships[0].author.display_name | Rong Luo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I27357992 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Software, Dalian University of Technology, Dalian 116081, China |
| authorships[0].institutions[0].id | https://openalex.org/I27357992 |
| authorships[0].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Runzhou Luo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Software, Dalian University of Technology, Dalian 116081, China |
| authorships[1].author.id | https://openalex.org/A5048456721 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6657-2760 |
| authorships[1].author.display_name | Bing Yao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32399674 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Artificial Intelligence, Shenyang Normal University, Shenyang 110034, China |
| authorships[1].institutions[0].id | https://openalex.org/I32399674 |
| authorships[1].institutions[0].ror | https://ror.org/05cdfgm80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32399674 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenyang Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Boning Yao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Artificial Intelligence, Shenyang Normal University, Shenyang 110034, China |
| authorships[2].author.id | https://openalex.org/A5100619309 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7882-948X |
| authorships[2].author.display_name | Qingwen Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210154361 |
| authorships[2].affiliations[0].raw_affiliation_string | International Education College, Shanghai Jian Qiao University, Shanghai 201306, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210154361 |
| authorships[2].institutions[0].ror | https://ror.org/04xdqtw10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210154361 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Jian Qiao University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Qingwen Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | International Education College, Shanghai Jian Qiao University, Shanghai 201306, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ewadirect.com/proceedings/ace/article/view/24698/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on Board Game Strategy Methods Based on Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13832 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.257099986076355 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Advanced Decision-Making Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W4310083477, https://openalex.org/W2328553770, https://openalex.org/W2920061524, https://openalex.org/W1977959518, https://openalex.org/W2038908348, https://openalex.org/W2107890255, https://openalex.org/W2106552856, https://openalex.org/W2145821588 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54254/2755-2721/2025.po24698 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387281889 |
| best_oa_location.source.issn | 2755-2721, 2755-273X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2755-2721 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied and Computational Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/24698/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied and Computational Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.54254/2755-2721/2025.po24698 |
| primary_location.id | doi:10.54254/2755-2721/2025.po24698 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387281889 |
| primary_location.source.issn | 2755-2721, 2755-273X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2755-2721 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied and Computational Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/24698/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied and Computational Engineering |
| primary_location.landing_page_url | https://doi.org/10.54254/2755-2721/2025.po24698 |
| publication_date | 2025-07-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 1, 165, 221 |
| abstract_inverted_index.AI | 55, 213 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.At | 169 |
| abstract_inverted_index.as | 127, 218, 220 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 44 |
| abstract_inverted_index.in | 27, 67, 81, 118, 136, 179, 194 |
| abstract_inverted_index.is | 116 |
| abstract_inverted_index.it | 161 |
| abstract_inverted_index.of | 13, 46, 54, 78, 192, 197 |
| abstract_inverted_index.on | 37, 215 |
| abstract_inverted_index.so | 31 |
| abstract_inverted_index.to | 34, 40, 60, 105, 131, 150, 154, 159 |
| abstract_inverted_index.AI. | 69 |
| abstract_inverted_index.AIs | 125 |
| abstract_inverted_index.Go, | 137 |
| abstract_inverted_index.and | 5, 17, 63, 92, 99, 102, 129, 140, 156, 187, 208 |
| abstract_inverted_index.but | 143 |
| abstract_inverted_index.can | 50, 204 |
| abstract_inverted_index.for | 211, 224 |
| abstract_inverted_index.has | 162, 175, 188 |
| abstract_inverted_index.not | 122 |
| abstract_inverted_index.out | 74 |
| abstract_inverted_index.the | 11, 52, 75, 95, 106, 133, 146, 170, 190, 195 |
| abstract_inverted_index.From | 152 |
| abstract_inverted_index.This | 70, 110, 202 |
| abstract_inverted_index.[1]. | 201 |
| abstract_inverted_index.also | 144, 163 |
| abstract_inverted_index.been | 176 |
| abstract_inverted_index.core | 76 |
| abstract_inverted_index.etc. | 200 |
| abstract_inverted_index.from | 58, 148, 157 |
| abstract_inverted_index.game | 68 |
| abstract_inverted_index.have | 10, 24 |
| abstract_inverted_index.look | 103 |
| abstract_inverted_index.many | 25 |
| abstract_inverted_index.need | 33 |
| abstract_inverted_index.only | 123 |
| abstract_inverted_index.same | 171 |
| abstract_inverted_index.show | 64 |
| abstract_inverted_index.such | 126 |
| abstract_inverted_index.that | 113 |
| abstract_inverted_index.they | 32 |
| abstract_inverted_index.well | 219 |
| abstract_inverted_index.with | 29 |
| abstract_inverted_index.Texas | 138 |
| abstract_inverted_index.based | 36 |
| abstract_inverted_index.board | 8, 82, 119, 216 |
| abstract_inverted_index.etc., | 186 |
| abstract_inverted_index.forms | 145 |
| abstract_inverted_index.games | 9 |
| abstract_inverted_index.helps | 124 |
| abstract_inverted_index.human | 134 |
| abstract_inverted_index.large | 14 |
| abstract_inverted_index.leap, | 62 |
| abstract_inverted_index.level | 135 |
| abstract_inverted_index.other | 141 |
| abstract_inverted_index.paper | 71, 111, 203 |
| abstract_inverted_index.shown | 189 |
| abstract_inverted_index.sorts | 73 |
| abstract_inverted_index.space | 16 |
| abstract_inverted_index.state | 15 |
| abstract_inverted_index.their | 86 |
| abstract_inverted_index.them, | 30 |
| abstract_inverted_index.time, | 172 |
| abstract_inverted_index.vein. | 168 |
| abstract_inverted_index.which | 121 |
| abstract_inverted_index.fields | 196 |
| abstract_inverted_index.formed | 164 |
| abstract_inverted_index.future | 107 |
| abstract_inverted_index.games, | 83, 120, 217 |
| abstract_inverted_index.gaming | 6 |
| abstract_inverted_index.reward | 184 |
| abstract_inverted_index.strong | 18 |
| abstract_inverted_index.virtue | 45 |
| abstract_inverted_index.AlphaGo | 128 |
| abstract_inverted_index.Hold'em | 139 |
| abstract_inverted_index.ability | 57 |
| abstract_inverted_index.achieve | 41 |
| abstract_inverted_index.complex | 183, 225 |
| abstract_inverted_index.current | 96 |
| abstract_inverted_index.dealing | 28 |
| abstract_inverted_index.dynamic | 19 |
| abstract_inverted_index.ethical | 100 |
| abstract_inverted_index.forward | 104 |
| abstract_inverted_index.methods | 23 |
| abstract_inverted_index.promote | 51 |
| abstract_inverted_index.provide | 205 |
| abstract_inverted_index.states, | 182 |
| abstract_inverted_index.surpass | 132 |
| abstract_inverted_index.through | 178 |
| abstract_inverted_index.typical | 2 |
| abstract_inverted_index.Libratus | 130 |
| abstract_inverted_index.analyzes | 85 |
| abstract_inverted_index.breaking | 177 |
| abstract_inverted_index.guidance | 210 |
| abstract_inverted_index.however, | 21 |
| abstract_inverted_index.learning | 39, 49, 80, 115, 174 |
| abstract_inverted_index.problem, | 7 |
| abstract_inverted_index.research | 214 |
| abstract_inverted_index.strategy | 42 |
| abstract_inverted_index.concludes | 112 |
| abstract_inverted_index.discusses | 94 |
| abstract_inverted_index.effective | 117 |
| abstract_inverted_index.evolution | 167 |
| abstract_inverted_index.potential | 191 |
| abstract_inverted_index.practical | 209 |
| abstract_inverted_index.problems. | 227 |
| abstract_inverted_index.technical | 87, 97 |
| abstract_inverted_index.universal | 222 |
| abstract_inverted_index.advantages | 66, 91 |
| abstract_inverted_index.algorithms | 77 |
| abstract_inverted_index.applicable | 89 |
| abstract_inverted_index.complexity | 12 |
| abstract_inverted_index.direction. | 109 |
| abstract_inverted_index.education, | 198 |
| abstract_inverted_index.functions, | 185 |
| abstract_inverted_index.processing | 180 |
| abstract_inverted_index.references | 207 |
| abstract_inverted_index.scenarios, | 90, 142 |
| abstract_inverted_index.sequential | 3 |
| abstract_inverted_index.subsequent | 212 |
| abstract_inverted_index.transition | 147 |
| abstract_inverted_index.bottlenecks | 98 |
| abstract_inverted_index.challenges, | 101 |
| abstract_inverted_index.data-driven | 61 |
| abstract_inverted_index.development | 108 |
| abstract_inverted_index.healthcare, | 199 |
| abstract_inverted_index.limitations | 26 |
| abstract_inverted_index.methodology | 223 |
| abstract_inverted_index.realization | 53 |
| abstract_inverted_index.significant | 65 |
| abstract_inverted_index.theoretical | 206 |
| abstract_inverted_index.traditional | 22 |
| abstract_inverted_index.data-driven, | 151, 155 |
| abstract_inverted_index.data-driven. | 47 |
| abstract_inverted_index.optimization | 43 |
| abstract_inverted_index.Reinforcement | 48 |
| abstract_inverted_index.comparatively | 84 |
| abstract_inverted_index.reinforcement | 38, 79, 114, 173 |
| abstract_inverted_index.technological | 166 |
| abstract_inverted_index.confrontation, | 20 |
| abstract_inverted_index.disadvantages, | 93 |
| abstract_inverted_index.generalization | 193 |
| abstract_inverted_index.rule-dependent | 59 |
| abstract_inverted_index.systematically | 72 |
| abstract_inverted_index.decision-making | 4, 56, 226 |
| abstract_inverted_index.model-dependent | 149, 153 |
| abstract_inverted_index.characteristics, | 88 |
| abstract_inverted_index.high-dimensional | 181 |
| abstract_inverted_index.multi-intelligence, | 160 |
| abstract_inverted_index.single-intelligence | 158 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.35224294 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |