Research on Constructing a prognosis prediction Model of Breast Cancer LncRNA Based on the TCGA Database Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7406805/v1
Breast cancer remains a leading cause of cancer-related mortality in women, with challenges in prognosis prediction and therapeutic resistance. This study aimed to identify long non-coding RNAs (lncRNAs) associated with breast cancer prognosis and construct a predictive risk model. RNA-seq data from 963 breast cancer and 110 normal tissue samples were obtained from The Cancer Genome Atlas (TCGA). Differential expression analysis revealed 1,197 dysregulated lncRNAs and 1,809 mRNAs (|log2FC| >2, p < 0.01). Univariate Cox and LASSO regression analyses identified 18 prognosis-related lncRNAs, further refined to 14 key genes via multivariate Cox regression. A risk scoring model was established based on expression levels and regression coefficients of these lncRNAs (e.g., AC093515.1, WT1-AS, LINC01224). Patients stratified into high-risk (n = 481) and low-risk (n = 482) groups showed significantly different survival outcomes (p < 0.01), with the high-risk group exhibiting elevated mortality. The model demonstrated robust predictive performance, achieving an AUC of 0.731 in ROC analysis. Notably, LINC01224, AL133467.1, and MAFA-AS1 were identified as protective factors (HR < 1), while AC093515.1, WT1-AS, and LINC00668 acted as risk factors (HR > 1). These findings provide a novel lncRNA-based prognostic tool and potential therapeutic targets for breast cancer management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7406805/v1
- https://www.researchsquare.com/article/rs-7406805/latest.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414928040
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414928040Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7406805/v1Digital Object Identifier
- Title
-
Research on Constructing a prognosis prediction Model of Breast Cancer LncRNA Based on the TCGA DatabaseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-08Full publication date if available
- Authors
-
Shu-Fen Lan, Duo Zuo, Xiaoya Zhai, Jun Lin, Hong Jiang, Lisa Tan, Zhihua WangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7406805/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7406805/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7406805/latest.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414928040 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7406805/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7406805/v1 |
| ids.openalex | https://openalex.org/W4414928040 |
| fwci | 0.0 |
| type | article |
| title | Research on Constructing a prognosis prediction Model of Breast Cancer LncRNA Based on the TCGA Database |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7406805/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7406805/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7406805/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5110902065 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shu-Fen Lan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I176134282 |
| authorships[0].affiliations[0].raw_affiliation_string | Guilin Medical University |
| authorships[0].institutions[0].id | https://openalex.org/I176134282 |
| authorships[0].institutions[0].ror | https://ror.org/000prga03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I176134282 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guilin Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Siyin Lan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guilin Medical University |
| authorships[1].author.id | https://openalex.org/A5055422539 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0308-8525 |
| authorships[1].author.display_name | Duo Zuo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I176134282 |
| authorships[1].affiliations[0].raw_affiliation_string | Guilin Medical University |
| authorships[1].institutions[0].id | https://openalex.org/I176134282 |
| authorships[1].institutions[0].ror | https://ror.org/000prga03 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I176134282 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guilin Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dongyang Zuo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guilin Medical University |
| authorships[2].author.id | https://openalex.org/A5047185803 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaoya Zhai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I176134282 |
| authorships[2].affiliations[0].raw_affiliation_string | Guilin Medical University |
| authorships[2].institutions[0].id | https://openalex.org/I176134282 |
| authorships[2].institutions[0].ror | https://ror.org/000prga03 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I176134282 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guilin Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoya Zhai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Guilin Medical University |
| authorships[3].author.id | https://openalex.org/A5100684205 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5152-6518 |
| authorships[3].author.display_name | Jun Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I176134282 |
| authorships[3].affiliations[0].raw_affiliation_string | Guilin Medical University |
| authorships[3].institutions[0].id | https://openalex.org/I176134282 |
| authorships[3].institutions[0].ror | https://ror.org/000prga03 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I176134282 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guilin Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiayi Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guilin Medical University |
| authorships[4].author.id | https://openalex.org/A5100764606 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2391-2753 |
| authorships[4].author.display_name | Hong Jiang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I176134282 |
| authorships[4].affiliations[0].raw_affiliation_string | Guilin Medical University |
| authorships[4].institutions[0].id | https://openalex.org/I176134282 |
| authorships[4].institutions[0].ror | https://ror.org/000prga03 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I176134282 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guilin Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jiangtao Hong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Guilin Medical University |
| authorships[5].author.id | https://openalex.org/A5087136850 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Lisa Tan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I176134282 |
| authorships[5].affiliations[0].raw_affiliation_string | Guilin Medical University |
| authorships[5].institutions[0].id | https://openalex.org/I176134282 |
| authorships[5].institutions[0].ror | https://ror.org/000prga03 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I176134282 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Guilin Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lanqing Tan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Guilin Medical University |
| authorships[6].author.id | https://openalex.org/A5026000971 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5155-1457 |
| authorships[6].author.display_name | Zhihua Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I176134282 |
| authorships[6].affiliations[0].raw_affiliation_string | Guilin Medical University |
| authorships[6].institutions[0].id | https://openalex.org/I176134282 |
| authorships[6].institutions[0].ror | https://ror.org/000prga03 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I176134282 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Guilin Medical University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhihua Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Guilin Medical University |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7406805/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on Constructing a prognosis prediction Model of Breast Cancer LncRNA Based on the TCGA Database |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7406805/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7406805/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7406805/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7406805/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7406805/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7406805/v1 |
| publication_date | 2025-10-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 119, 124 |
| abstract_inverted_index.A | 94 |
| abstract_inverted_index.a | 4, 36, 184 |
| abstract_inverted_index.p | 71 |
| abstract_inverted_index.(n | 118, 123 |
| abstract_inverted_index.(p | 132 |
| abstract_inverted_index.14 | 87 |
| abstract_inverted_index.18 | 81 |
| abstract_inverted_index.an | 149 |
| abstract_inverted_index.as | 163, 175 |
| abstract_inverted_index.in | 10, 14, 153 |
| abstract_inverted_index.of | 7, 107, 151 |
| abstract_inverted_index.on | 101 |
| abstract_inverted_index.to | 23, 86 |
| abstract_inverted_index.(HR | 166, 178 |
| abstract_inverted_index.1), | 168 |
| abstract_inverted_index.1). | 180 |
| abstract_inverted_index.110 | 47 |
| abstract_inverted_index.963 | 43 |
| abstract_inverted_index.AUC | 150 |
| abstract_inverted_index.Cox | 75, 92 |
| abstract_inverted_index.ROC | 154 |
| abstract_inverted_index.The | 54, 142 |
| abstract_inverted_index.and | 17, 34, 46, 66, 76, 104, 121, 159, 172, 189 |
| abstract_inverted_index.for | 193 |
| abstract_inverted_index.key | 88 |
| abstract_inverted_index.the | 136 |
| abstract_inverted_index.via | 90 |
| abstract_inverted_index.was | 98 |
| abstract_inverted_index.> | 179 |
| abstract_inverted_index.< | 72, 133, 167 |
| abstract_inverted_index.481) | 120 |
| abstract_inverted_index.482) | 125 |
| abstract_inverted_index.RNAs | 27 |
| abstract_inverted_index.This | 20 |
| abstract_inverted_index.data | 41 |
| abstract_inverted_index.from | 42, 53 |
| abstract_inverted_index.into | 116 |
| abstract_inverted_index.long | 25 |
| abstract_inverted_index.risk | 38, 95, 176 |
| abstract_inverted_index.tool | 188 |
| abstract_inverted_index.were | 51, 161 |
| abstract_inverted_index.with | 12, 30, 135 |
| abstract_inverted_index.0.731 | 152 |
| abstract_inverted_index.1,197 | 63 |
| abstract_inverted_index.1,809 | 67 |
| abstract_inverted_index.Atlas | 57 |
| abstract_inverted_index.LASSO | 77 |
| abstract_inverted_index.These | 181 |
| abstract_inverted_index.acted | 174 |
| abstract_inverted_index.aimed | 22 |
| abstract_inverted_index.based | 100 |
| abstract_inverted_index.cause | 6 |
| abstract_inverted_index.genes | 89 |
| abstract_inverted_index.group | 138 |
| abstract_inverted_index.mRNAs | 68 |
| abstract_inverted_index.model | 97, 143 |
| abstract_inverted_index.novel | 185 |
| abstract_inverted_index.study | 21 |
| abstract_inverted_index.these | 108 |
| abstract_inverted_index.while | 169 |
| abstract_inverted_index.>2, | 70 |
| abstract_inverted_index.(e.g., | 110 |
| abstract_inverted_index.0.01), | 134 |
| abstract_inverted_index.0.01). | 73 |
| abstract_inverted_index.Breast | 1 |
| abstract_inverted_index.Cancer | 55 |
| abstract_inverted_index.Genome | 56 |
| abstract_inverted_index.breast | 31, 44, 194 |
| abstract_inverted_index.cancer | 2, 32, 45, 195 |
| abstract_inverted_index.groups | 126 |
| abstract_inverted_index.levels | 103 |
| abstract_inverted_index.model. | 39 |
| abstract_inverted_index.normal | 48 |
| abstract_inverted_index.robust | 145 |
| abstract_inverted_index.showed | 127 |
| abstract_inverted_index.tissue | 49 |
| abstract_inverted_index.women, | 11 |
| abstract_inverted_index.(TCGA). | 58 |
| abstract_inverted_index.RNA-seq | 40 |
| abstract_inverted_index.WT1-AS, | 112, 171 |
| abstract_inverted_index.factors | 165, 177 |
| abstract_inverted_index.further | 84 |
| abstract_inverted_index.leading | 5 |
| abstract_inverted_index.lncRNAs | 65, 109 |
| abstract_inverted_index.provide | 183 |
| abstract_inverted_index.refined | 85 |
| abstract_inverted_index.remains | 3 |
| abstract_inverted_index.samples | 50 |
| abstract_inverted_index.scoring | 96 |
| abstract_inverted_index.targets | 192 |
| abstract_inverted_index.MAFA-AS1 | 160 |
| abstract_inverted_index.Notably, | 156 |
| abstract_inverted_index.Patients | 114 |
| abstract_inverted_index.analyses | 79 |
| abstract_inverted_index.analysis | 61 |
| abstract_inverted_index.elevated | 140 |
| abstract_inverted_index.findings | 182 |
| abstract_inverted_index.identify | 24 |
| abstract_inverted_index.lncRNAs, | 83 |
| abstract_inverted_index.low-risk | 122 |
| abstract_inverted_index.obtained | 52 |
| abstract_inverted_index.outcomes | 131 |
| abstract_inverted_index.revealed | 62 |
| abstract_inverted_index.survival | 130 |
| abstract_inverted_index.(lncRNAs) | 28 |
| abstract_inverted_index.(|log2FC| | 69 |
| abstract_inverted_index.LINC00668 | 173 |
| abstract_inverted_index.achieving | 148 |
| abstract_inverted_index.analysis. | 155 |
| abstract_inverted_index.construct | 35 |
| abstract_inverted_index.different | 129 |
| abstract_inverted_index.high-risk | 117, 137 |
| abstract_inverted_index.mortality | 9 |
| abstract_inverted_index.potential | 190 |
| abstract_inverted_index.prognosis | 15, 33 |
| abstract_inverted_index.LINC01224, | 157 |
| abstract_inverted_index.Univariate | 74 |
| abstract_inverted_index.associated | 29 |
| abstract_inverted_index.challenges | 13 |
| abstract_inverted_index.exhibiting | 139 |
| abstract_inverted_index.expression | 60, 102 |
| abstract_inverted_index.identified | 80, 162 |
| abstract_inverted_index.mortality. | 141 |
| abstract_inverted_index.non-coding | 26 |
| abstract_inverted_index.prediction | 16 |
| abstract_inverted_index.predictive | 37, 146 |
| abstract_inverted_index.prognostic | 187 |
| abstract_inverted_index.protective | 164 |
| abstract_inverted_index.regression | 78, 105 |
| abstract_inverted_index.stratified | 115 |
| abstract_inverted_index.AC093515.1, | 111, 170 |
| abstract_inverted_index.AL133467.1, | 158 |
| abstract_inverted_index.LINC01224). | 113 |
| abstract_inverted_index.established | 99 |
| abstract_inverted_index.management. | 196 |
| abstract_inverted_index.regression. | 93 |
| abstract_inverted_index.resistance. | 19 |
| abstract_inverted_index.therapeutic | 18, 191 |
| abstract_inverted_index.Differential | 59 |
| abstract_inverted_index.coefficients | 106 |
| abstract_inverted_index.demonstrated | 144 |
| abstract_inverted_index.dysregulated | 64 |
| abstract_inverted_index.lncRNA-based | 186 |
| abstract_inverted_index.multivariate | 91 |
| abstract_inverted_index.performance, | 147 |
| abstract_inverted_index.significantly | 128 |
| abstract_inverted_index.cancer-related | 8 |
| abstract_inverted_index.prognosis-related | 82 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |