Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.32604/ee.2024.047706
To address the issues of limited demand response data, low generalization of demand response potential evaluation, and poor demand response effect, the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly, based on the demand response process and demand response behavior, obtain demand response characteristics that characterize the process and behavior.Secondly, establish a feature extraction and prediction model based on data mining, including similar day clustering, time series decomposition, redundancy processing, and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly, the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads, and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally, the effectiveness of the method proposed in the article is verified through examples, providing a reference for load aggregators to formulate demand response schemes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/ee.2024.047706
- https://www.techscience.com/energy/online/detail/20106/pdf
- OA Status
- diamond
- Cited By
- 5
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392752943
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392752943Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/ee.2024.047706Digital Object Identifier
- Title
-
Research on Demand Response Potential of Adjustable Loads in Demand Response ScenariosWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Zhishuo Zhang, Xinhui Du, Yaoke Shang, Jingshu Zhang, Wei Zhao, Jia SuList of authors in order
- Landing page
-
https://doi.org/10.32604/ee.2024.047706Publisher landing page
- PDF URL
-
https://www.techscience.com/energy/online/detail/20106/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.techscience.com/energy/online/detail/20106/pdfDirect OA link when available
- Concepts
-
Demand response, Response time, Demand forecasting, Computer science, Load management, Cluster analysis, Demand patterns, Frequency response, Demand management, Engineering, Operations research, Electricity, Machine learning, Economics, Macroeconomics, Computer graphics (images), Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392752943 |
|---|---|
| doi | https://doi.org/10.32604/ee.2024.047706 |
| ids.doi | https://doi.org/10.32604/ee.2024.047706 |
| ids.openalex | https://openalex.org/W4392752943 |
| fwci | 1.84584236 |
| type | article |
| title | Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios |
| biblio.issue | 6 |
| biblio.volume | 121 |
| biblio.last_page | 1605 |
| biblio.first_page | 1577 |
| topics[0].id | https://openalex.org/T10603 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Smart Grid Energy Management |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9868000149726868 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T10121 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9775999784469604 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Building Energy and Comfort Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779438525 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9784368872642517 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5255048 |
| concepts[0].display_name | Demand response |
| concepts[1].id | https://openalex.org/C19012869 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8036300539970398 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q578372 |
| concepts[1].display_name | Response time |
| concepts[2].id | https://openalex.org/C193809577 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6745499968528748 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3409300 |
| concepts[2].display_name | Demand forecasting |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4848933815956116 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2779370713 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4782882332801819 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q357554 |
| concepts[4].display_name | Load management |
| concepts[5].id | https://openalex.org/C73555534 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4561646580696106 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[5].display_name | Cluster analysis |
| concepts[6].id | https://openalex.org/C32597650 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4271981120109558 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5255044 |
| concepts[6].display_name | Demand patterns |
| concepts[7].id | https://openalex.org/C8590192 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4112468957901001 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1054694 |
| concepts[7].display_name | Frequency response |
| concepts[8].id | https://openalex.org/C179366874 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3276679217815399 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1185130 |
| concepts[8].display_name | Demand management |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.25901931524276733 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C42475967 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2553141117095947 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[10].display_name | Operations research |
| concepts[11].id | https://openalex.org/C206658404 |
| concepts[11].level | 2 |
| concepts[11].score | 0.16034728288650513 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12725 |
| concepts[11].display_name | Electricity |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14252278208732605 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09652483463287354 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C139719470 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[14].display_name | Macroeconomics |
| concepts[15].id | https://openalex.org/C121684516 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[15].display_name | Computer graphics (images) |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/demand-response |
| keywords[0].score | 0.9784368872642517 |
| keywords[0].display_name | Demand response |
| keywords[1].id | https://openalex.org/keywords/response-time |
| keywords[1].score | 0.8036300539970398 |
| keywords[1].display_name | Response time |
| keywords[2].id | https://openalex.org/keywords/demand-forecasting |
| keywords[2].score | 0.6745499968528748 |
| keywords[2].display_name | Demand forecasting |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4848933815956116 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/load-management |
| keywords[4].score | 0.4782882332801819 |
| keywords[4].display_name | Load management |
| keywords[5].id | https://openalex.org/keywords/cluster-analysis |
| keywords[5].score | 0.4561646580696106 |
| keywords[5].display_name | Cluster analysis |
| keywords[6].id | https://openalex.org/keywords/demand-patterns |
| keywords[6].score | 0.4271981120109558 |
| keywords[6].display_name | Demand patterns |
| keywords[7].id | https://openalex.org/keywords/frequency-response |
| keywords[7].score | 0.4112468957901001 |
| keywords[7].display_name | Frequency response |
| keywords[8].id | https://openalex.org/keywords/demand-management |
| keywords[8].score | 0.3276679217815399 |
| keywords[8].display_name | Demand management |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.25901931524276733 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/operations-research |
| keywords[10].score | 0.2553141117095947 |
| keywords[10].display_name | Operations research |
| keywords[11].id | https://openalex.org/keywords/electricity |
| keywords[11].score | 0.16034728288650513 |
| keywords[11].display_name | Electricity |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.14252278208732605 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/economics |
| keywords[13].score | 0.09652483463287354 |
| keywords[13].display_name | Economics |
| language | en |
| locations[0].id | doi:10.32604/ee.2024.047706 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S50979996 |
| locations[0].source.issn | 0199-8595, 1546-0118 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0199-8595 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Energy Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].license | |
| locations[0].pdf_url | https://www.techscience.com/energy/online/detail/20106/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy Engineering |
| locations[0].landing_page_url | https://doi.org/10.32604/ee.2024.047706 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055830686 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-7550-6534 |
| authorships[0].author.display_name | Zhishuo Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9086337 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[0].institutions[0].id | https://openalex.org/I9086337 |
| authorships[0].institutions[0].ror | https://ror.org/03kv08d37 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9086337 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Taiyuan University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhishuo Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[1].author.id | https://openalex.org/A5100851801 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xinhui Du |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9086337 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[1].institutions[0].id | https://openalex.org/I9086337 |
| authorships[1].institutions[0].ror | https://ror.org/03kv08d37 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9086337 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Taiyuan University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinhui Du |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[2].author.id | https://openalex.org/A5005624977 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yaoke Shang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9086337 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[2].institutions[0].id | https://openalex.org/I9086337 |
| authorships[2].institutions[0].ror | https://ror.org/03kv08d37 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9086337 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Taiyuan University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yaoke Shang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[3].author.id | https://openalex.org/A5035774821 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-6461-3877 |
| authorships[3].author.display_name | Jingshu Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9086337 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[3].institutions[0].id | https://openalex.org/I9086337 |
| authorships[3].institutions[0].ror | https://ror.org/03kv08d37 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9086337 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Taiyuan University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingshu Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[4].author.id | https://openalex.org/A5101455300 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4020-7471 |
| authorships[4].author.display_name | Wei Zhao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I9086337 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[4].institutions[0].id | https://openalex.org/I9086337 |
| authorships[4].institutions[0].ror | https://ror.org/03kv08d37 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I9086337 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Taiyuan University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wei Zhao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[5].author.id | https://openalex.org/A5085689718 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2895-1495 |
| authorships[5].author.display_name | Jia Su |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I9086337 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| authorships[5].institutions[0].id | https://openalex.org/I9086337 |
| authorships[5].institutions[0].ror | https://ror.org/03kv08d37 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I9086337 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Taiyuan University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jia Su |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030000, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.techscience.com/energy/online/detail/20106/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10603 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Smart Grid Energy Management |
| related_works | https://openalex.org/W2143732059, https://openalex.org/W3031225824, https://openalex.org/W4205213322, https://openalex.org/W2017235719, https://openalex.org/W4401878162, https://openalex.org/W2366973950, https://openalex.org/W4391054463, https://openalex.org/W1493487844, https://openalex.org/W4231049646, https://openalex.org/W2352636987 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/ee.2024.047706 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S50979996 |
| best_oa_location.source.issn | 0199-8595, 1546-0118 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0199-8595 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Energy Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.techscience.com/energy/online/detail/20106/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.32604/ee.2024.047706 |
| primary_location.id | doi:10.32604/ee.2024.047706 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S50979996 |
| primary_location.source.issn | 0199-8595, 1546-0118 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0199-8595 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Energy Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.license | |
| primary_location.pdf_url | https://www.techscience.com/energy/online/detail/20106/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy Engineering |
| primary_location.landing_page_url | https://doi.org/10.32604/ee.2024.047706 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6683432852, https://openalex.org/W2923766287, https://openalex.org/W3014201377, https://openalex.org/W6853166755, https://openalex.org/W4367146487, https://openalex.org/W6857127117, https://openalex.org/W2096335861, https://openalex.org/W7001244178, https://openalex.org/W3017006306, https://openalex.org/W4387609289, https://openalex.org/W2160930869, https://openalex.org/W4236110830, https://openalex.org/W4381302977 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 24, 38, 79, 142, 186 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.as | 126 |
| abstract_inverted_index.in | 47, 167, 178 |
| abstract_inverted_index.is | 155, 181 |
| abstract_inverted_index.of | 4, 11, 103, 117, 163, 174 |
| abstract_inverted_index.on | 34, 52, 59, 86, 108, 120, 149 |
| abstract_inverted_index.to | 132, 157, 191 |
| abstract_inverted_index.and | 16, 30, 37, 54, 64, 76, 82, 98, 138, 141, 151 |
| abstract_inverted_index.are | 112, 124 |
| abstract_inverted_index.day | 91, 111, 123 |
| abstract_inverted_index.for | 44, 188 |
| abstract_inverted_index.low | 9 |
| abstract_inverted_index.the | 2, 21, 60, 74, 109, 114, 121, 159, 172, 175, 179 |
| abstract_inverted_index.data | 35, 87, 99, 116 |
| abstract_inverted_index.each | 104 |
| abstract_inverted_index.load | 189 |
| abstract_inverted_index.poor | 17 |
| abstract_inverted_index.that | 72 |
| abstract_inverted_index.time | 93 |
| abstract_inverted_index.used | 125 |
| abstract_inverted_index.based | 33, 51, 58, 85, 148 |
| abstract_inverted_index.data, | 8 |
| abstract_inverted_index.loads | 46, 166 |
| abstract_inverted_index.model | 32, 43, 84, 147 |
| abstract_inverted_index.demand | 6, 12, 18, 25, 39, 48, 61, 65, 69, 105, 127, 135, 143, 160, 169, 193 |
| abstract_inverted_index.issues | 3 |
| abstract_inverted_index.loads, | 140 |
| abstract_inverted_index.method | 176 |
| abstract_inverted_index.mining | 36 |
| abstract_inverted_index.obtain | 68 |
| abstract_inverted_index.series | 94 |
| abstract_inverted_index.values | 102 |
| abstract_inverted_index.weight | 56, 153 |
| abstract_inverted_index.address | 1 |
| abstract_inverted_index.article | 22, 180 |
| abstract_inverted_index.effect, | 20 |
| abstract_inverted_index.feature | 28, 80, 107 |
| abstract_inverted_index.limited | 5 |
| abstract_inverted_index.mining, | 88 |
| abstract_inverted_index.process | 63, 75 |
| abstract_inverted_index.similar | 90 |
| abstract_inverted_index.through | 183 |
| abstract_inverted_index.various | 118 |
| abstract_inverted_index.proposed | 177 |
| abstract_inverted_index.proposes | 23 |
| abstract_inverted_index.response | 7, 13, 19, 26, 40, 49, 62, 66, 70, 106, 110, 122, 128, 136, 144, 161, 170, 194 |
| abstract_inverted_index.schemes. | 195 |
| abstract_inverted_index.verified | 182 |
| abstract_inverted_index.behavior, | 67 |
| abstract_inverted_index.calculate | 158 |
| abstract_inverted_index.different | 134, 164, 168 |
| abstract_inverted_index.establish | 78 |
| abstract_inverted_index.examples, | 184 |
| abstract_inverted_index.formulate | 192 |
| abstract_inverted_index.including | 89 |
| abstract_inverted_index.objective | 55, 152 |
| abstract_inverted_index.potential | 14, 27, 41, 129, 145, 162 |
| abstract_inverted_index.predicted | 101, 115 |
| abstract_inverted_index.providing | 185 |
| abstract_inverted_index.reference | 187 |
| abstract_inverted_index.represent | 133 |
| abstract_inverted_index.scenarios | 50, 137 |
| abstract_inverted_index.adjustable | 45, 139, 165 |
| abstract_inverted_index.allocation | 154 |
| abstract_inverted_index.assessment | 42 |
| abstract_inverted_index.evaluation | 130, 146 |
| abstract_inverted_index.extraction | 29, 81 |
| abstract_inverted_index.indicators | 131 |
| abstract_inverted_index.prediction | 31, 83 |
| abstract_inverted_index.redundancy | 96 |
| abstract_inverted_index.subjective | 53, 150 |
| abstract_inverted_index.aggregators | 190 |
| abstract_inverted_index.clustering, | 92 |
| abstract_inverted_index.established | 156 |
| abstract_inverted_index.evaluation, | 15 |
| abstract_inverted_index.processing, | 97 |
| abstract_inverted_index.characterize | 73 |
| abstract_inverted_index.effectiveness | 173 |
| abstract_inverted_index.decomposition, | 95 |
| abstract_inverted_index.generalization | 10 |
| abstract_inverted_index.prediction.The | 100 |
| abstract_inverted_index.characteristics | 71, 119 |
| abstract_inverted_index.analysis.Firstly, | 57 |
| abstract_inverted_index.obtained.Thirdly, | 113 |
| abstract_inverted_index.behavior.Secondly, | 77 |
| abstract_inverted_index.scenarios.Finally, | 171 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100851801 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I9086337 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.81179765 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |