Research on downscaling method of the enhanced TROPOMI solar-induced chlorophyll fluorescence data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/10106049.2024.2354417
Solar-induced chlorophyll fluorescence (SIF) is the release of plant energy during photosynthesis, which is significantly superior to the vegetation index in the characterization of vegetation growth. However, the existing satellite retrieved SIF data have the problems of low spatial resolution and spatial discontinuity. To solve these problems, this paper proposes multiple parameters downscaling method that considers the structural and physiological characteristics of SIF. Multiple linear regression (MLR), random forest (RF), and convolutional neural network (CNN) models were used to construct a downscaling model for the TROPOspheric Monitoring Instrument (TROPOMI) Enhanced SIF (eSIF) data. The theory of spatial scale invariance was applied to invert the 500 m spatial resolution SIF data products for Henan Province from 2012 to 2021 using Moderate-resolution Imaging Spectroradiometer (MODIS) data. The evaluation metrics for assessing downscaling accuracy include the determination coefficient (R2), mean absolute error (MAE), and root mean squared error (RMSE). The experimental results demonstrate that the RF model outperforms others, achieving R2, MAE, and RMSE values of 0.935, 0.041 mW/m2/nm2/sr, and 0.061 mW/m2/nm2/sr, respectively. These results successfully meet the downscaling requirements. The downscaling data products have better fitting effect with eSIF and new Global 'OCO-2′ SIF (GOSIF) data both in time and space. The correlation between downscaling SIF data and winter wheat yield is significantly better than that of GOSIF data products and shows strong correlation with Gross Primary Productivity (GPP). By considering the structural and physiological characteristics of SIF, the RF algorithm can effectively retrieve reliable 500 m spatial resolution SIF data, this provides methodological support for the application of SIF data at higher spatial scales.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/10106049.2024.2354417
- https://www.tandfonline.com/doi/pdf/10.1080/10106049.2024.2354417?needAccess=true
- OA Status
- gold
- Cited By
- 2
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396920565
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396920565Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/10106049.2024.2354417Digital Object Identifier
- Title
-
Research on downscaling method of the enhanced TROPOMI solar-induced chlorophyll fluorescence dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Xiaoping Lu, Guosheng Cai, Xiangjun Zhang, Haikun Yu, Qinggang Zhang, Xiaoxuan Wang, Yushi Zhou, Yingying SuList of authors in order
- Landing page
-
https://doi.org/10.1080/10106049.2024.2354417Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/10106049.2024.2354417?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/10106049.2024.2354417?needAccess=trueDirect OA link when available
- Concepts
-
Downscaling, Remote sensing, Chlorophyll fluorescence, Environmental science, Chlorophyll a, Chlorophyll, Geography, Meteorology, Botany, Biology, PrecipitationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396920565 |
|---|---|
| doi | https://doi.org/10.1080/10106049.2024.2354417 |
| ids.doi | https://doi.org/10.1080/10106049.2024.2354417 |
| ids.openalex | https://openalex.org/W4396920565 |
| fwci | 0.79387962 |
| type | article |
| title | Research on downscaling method of the enhanced TROPOMI solar-induced chlorophyll fluorescence data |
| biblio.issue | 1 |
| biblio.volume | 39 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14157 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9700999855995178 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Environmental and Agricultural Sciences |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9592000246047974 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9557999968528748 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list.value | 3265 |
| apc_list.currency | AUD |
| apc_list.value_usd | 2390 |
| apc_paid.value | 3265 |
| apc_paid.currency | AUD |
| apc_paid.value_usd | 2390 |
| concepts[0].id | https://openalex.org/C41156917 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7933657169342041 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q682831 |
| concepts[0].display_name | Downscaling |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6184694766998291 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C24630173 |
| concepts[2].level | 3 |
| concepts[2].score | 0.522121787071228 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1075297 |
| concepts[2].display_name | Chlorophyll fluorescence |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.44750839471817017 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C2778902199 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4397128224372864 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q133878 |
| concepts[4].display_name | Chlorophyll a |
| concepts[5].id | https://openalex.org/C2776373379 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3865474760532379 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43177 |
| concepts[5].display_name | Chlorophyll |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.37754181027412415 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C153294291 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35291820764541626 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[7].display_name | Meteorology |
| concepts[8].id | https://openalex.org/C59822182 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24426668882369995 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[8].display_name | Botany |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12140804529190063 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C107054158 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25257 |
| concepts[10].display_name | Precipitation |
| keywords[0].id | https://openalex.org/keywords/downscaling |
| keywords[0].score | 0.7933657169342041 |
| keywords[0].display_name | Downscaling |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.6184694766998291 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/chlorophyll-fluorescence |
| keywords[2].score | 0.522121787071228 |
| keywords[2].display_name | Chlorophyll fluorescence |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.44750839471817017 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/chlorophyll-a |
| keywords[4].score | 0.4397128224372864 |
| keywords[4].display_name | Chlorophyll a |
| keywords[5].id | https://openalex.org/keywords/chlorophyll |
| keywords[5].score | 0.3865474760532379 |
| keywords[5].display_name | Chlorophyll |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.37754181027412415 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/meteorology |
| keywords[7].score | 0.35291820764541626 |
| keywords[7].display_name | Meteorology |
| keywords[8].id | https://openalex.org/keywords/botany |
| keywords[8].score | 0.24426668882369995 |
| keywords[8].display_name | Botany |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.12140804529190063 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1080/10106049.2024.2354417 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S106004775 |
| locations[0].source.issn | 1010-6049, 1752-0762 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1010-6049 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Geocarto International |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/10106049.2024.2354417?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geocarto International |
| locations[0].landing_page_url | https://doi.org/10.1080/10106049.2024.2354417 |
| locations[1].id | pmh:oai:doaj.org/article:4bdc6d1e6f1f42c2873c5b8e312caa39 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Geocarto International, Vol 39, Iss 1 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/4bdc6d1e6f1f42c2873c5b8e312caa39 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5045561081 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1090-8437 |
| authorships[0].author.display_name | Xiaoping Lu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I211433327, https://openalex.org/I4210166499 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210166499 |
| authorships[0].institutions[0].ror | https://ror.org/05vr1c885 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210166499 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Henan Polytechnic University |
| authorships[0].institutions[1].id | https://openalex.org/I211433327 |
| authorships[0].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ministry of Natural Resources |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoping Lu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| authorships[1].author.id | https://openalex.org/A5058190564 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-0862-6959 |
| authorships[1].author.display_name | Guosheng Cai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I211433327, https://openalex.org/I4210166499 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210166499 |
| authorships[1].institutions[0].ror | https://ror.org/05vr1c885 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210166499 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Henan Polytechnic University |
| authorships[1].institutions[1].id | https://openalex.org/I211433327 |
| authorships[1].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ministry of Natural Resources |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guosheng Cai |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| authorships[2].author.id | https://openalex.org/A5100630108 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7340-0342 |
| authorships[2].author.display_name | Xiangjun Zhang |
| authorships[2].affiliations[0].raw_affiliation_string | Henan Remote Sensing Institute, Zhengzhou, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiangjun Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Henan Remote Sensing Institute, Zhengzhou, China |
| authorships[3].author.id | https://openalex.org/A5100956645 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Haikun Yu |
| authorships[3].affiliations[0].raw_affiliation_string | Henan Remote Sensing Institute, Zhengzhou, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Haikun Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Henan Remote Sensing Institute, Zhengzhou, China |
| authorships[4].author.id | https://openalex.org/A5040516731 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6846-0343 |
| authorships[4].author.display_name | Qinggang Zhang |
| authorships[4].affiliations[0].raw_affiliation_string | Zhongyuan Agricultural Insurance Co., Ltd, Zhengzhou, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qinggang Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhongyuan Agricultural Insurance Co., Ltd, Zhengzhou, China |
| authorships[5].author.id | https://openalex.org/A5115593886 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xiaoxuan Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I211433327, https://openalex.org/I4210166499 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210166499 |
| authorships[5].institutions[0].ror | https://ror.org/05vr1c885 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210166499 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Henan Polytechnic University |
| authorships[5].institutions[1].id | https://openalex.org/I211433327 |
| authorships[5].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Ministry of Natural Resources |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaoxuan Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| authorships[6].author.id | https://openalex.org/A5051120977 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8528-9135 |
| authorships[6].author.display_name | Yushi Zhou |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210113703 |
| authorships[6].affiliations[0].raw_affiliation_string | Henan University of Urban Construction, Pingdingshan, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210113703 |
| authorships[6].institutions[0].ror | https://ror.org/01x1skr92 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210113703 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Henan University of Urban Construction |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yushi Zhou |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Henan University of Urban Construction, Pingdingshan, China |
| authorships[7].author.id | https://openalex.org/A5030633188 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3376-7799 |
| authorships[7].author.display_name | Yingying Su |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I211433327, https://openalex.org/I4210166499 |
| authorships[7].affiliations[0].raw_affiliation_string | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210166499 |
| authorships[7].institutions[0].ror | https://ror.org/05vr1c885 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210166499 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Henan Polytechnic University |
| authorships[7].institutions[1].id | https://openalex.org/I211433327 |
| authorships[7].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[7].institutions[1].type | government |
| authorships[7].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Ministry of Natural Resources |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yingying Su |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines, Ministry of Natural Resources of the People's Republic of China, of Henan Polytechnic University, Jiaozuo, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/10106049.2024.2354417?needAccess=true |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on downscaling method of the enhanced TROPOMI solar-induced chlorophyll fluorescence data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14157 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9700999855995178 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Environmental and Agricultural Sciences |
| related_works | https://openalex.org/W1990673797, https://openalex.org/W2080576420, https://openalex.org/W2884149811, https://openalex.org/W1986726753, https://openalex.org/W2335740507, https://openalex.org/W2064136040, https://openalex.org/W2372987205, https://openalex.org/W2008742882, https://openalex.org/W2137665082, https://openalex.org/W1989719542 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/10106049.2024.2354417 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S106004775 |
| best_oa_location.source.issn | 1010-6049, 1752-0762 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1010-6049 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Geocarto International |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/10106049.2024.2354417?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geocarto International |
| best_oa_location.landing_page_url | https://doi.org/10.1080/10106049.2024.2354417 |
| primary_location.id | doi:10.1080/10106049.2024.2354417 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S106004775 |
| primary_location.source.issn | 1010-6049, 1752-0762 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1010-6049 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Geocarto International |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/10106049.2024.2354417?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geocarto International |
| primary_location.landing_page_url | https://doi.org/10.1080/10106049.2024.2354417 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2142283539, https://openalex.org/W2911964244, https://openalex.org/W1719739711, https://openalex.org/W2399029735, https://openalex.org/W4383570401, https://openalex.org/W1568528618, https://openalex.org/W2019623635, https://openalex.org/W4226203065, https://openalex.org/W2800635075, https://openalex.org/W2144346768, https://openalex.org/W1964960992, https://openalex.org/W3046821382, https://openalex.org/W3080097950, https://openalex.org/W2919558946, https://openalex.org/W2763833521, https://openalex.org/W4308422299, https://openalex.org/W4200331542, https://openalex.org/W4290779985, https://openalex.org/W3042211948, https://openalex.org/W4210757492, https://openalex.org/W2111443984, https://openalex.org/W2027548066, https://openalex.org/W568010113, https://openalex.org/W2782553988, https://openalex.org/W4311040082, https://openalex.org/W4382897098, https://openalex.org/W2605993846, https://openalex.org/W4322733092, https://openalex.org/W2102127703, https://openalex.org/W2911777435, https://openalex.org/W2147341427, https://openalex.org/W2808730255, https://openalex.org/W2394374475, https://openalex.org/W4383570408, https://openalex.org/W3034566098, https://openalex.org/W4385226851, https://openalex.org/W2895318950 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 80 |
| abstract_inverted_index.m | 105, 244 |
| abstract_inverted_index.By | 227 |
| abstract_inverted_index.RF | 152, 237 |
| abstract_inverted_index.To | 43 |
| abstract_inverted_index.at | 259 |
| abstract_inverted_index.in | 20, 195 |
| abstract_inverted_index.is | 4, 13, 209 |
| abstract_inverted_index.of | 7, 23, 36, 61, 95, 162, 214, 234, 256 |
| abstract_inverted_index.to | 16, 78, 101, 116 |
| abstract_inverted_index.500 | 104, 243 |
| abstract_inverted_index.R2, | 157 |
| abstract_inverted_index.SIF | 31, 90, 108, 191, 203, 247, 257 |
| abstract_inverted_index.The | 93, 124, 146, 177, 199 |
| abstract_inverted_index.and | 40, 58, 70, 140, 159, 166, 187, 197, 205, 218, 231 |
| abstract_inverted_index.can | 239 |
| abstract_inverted_index.for | 83, 111, 127, 253 |
| abstract_inverted_index.low | 37 |
| abstract_inverted_index.new | 188 |
| abstract_inverted_index.the | 5, 17, 21, 27, 34, 56, 84, 103, 132, 151, 174, 229, 236, 254 |
| abstract_inverted_index.was | 99 |
| abstract_inverted_index.2012 | 115 |
| abstract_inverted_index.2021 | 117 |
| abstract_inverted_index.MAE, | 158 |
| abstract_inverted_index.RMSE | 160 |
| abstract_inverted_index.SIF, | 235 |
| abstract_inverted_index.SIF. | 62 |
| abstract_inverted_index.both | 194 |
| abstract_inverted_index.data | 32, 109, 179, 193, 204, 216, 258 |
| abstract_inverted_index.eSIF | 186 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.have | 33, 181 |
| abstract_inverted_index.mean | 136, 142 |
| abstract_inverted_index.meet | 173 |
| abstract_inverted_index.root | 141 |
| abstract_inverted_index.than | 212 |
| abstract_inverted_index.that | 54, 150, 213 |
| abstract_inverted_index.this | 47, 249 |
| abstract_inverted_index.time | 196 |
| abstract_inverted_index.used | 77 |
| abstract_inverted_index.were | 76 |
| abstract_inverted_index.with | 185, 222 |
| abstract_inverted_index.(CNN) | 74 |
| abstract_inverted_index.(R2), | 135 |
| abstract_inverted_index.(RF), | 69 |
| abstract_inverted_index.(SIF) | 3 |
| abstract_inverted_index.0.041 | 164 |
| abstract_inverted_index.0.061 | 167 |
| abstract_inverted_index.GOSIF | 215 |
| abstract_inverted_index.Gross | 223 |
| abstract_inverted_index.Henan | 112 |
| abstract_inverted_index.These | 170 |
| abstract_inverted_index.data, | 248 |
| abstract_inverted_index.data. | 92, 123 |
| abstract_inverted_index.error | 138, 144 |
| abstract_inverted_index.index | 19 |
| abstract_inverted_index.model | 82, 153 |
| abstract_inverted_index.paper | 48 |
| abstract_inverted_index.plant | 8 |
| abstract_inverted_index.scale | 97 |
| abstract_inverted_index.shows | 219 |
| abstract_inverted_index.solve | 44 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.using | 118 |
| abstract_inverted_index.wheat | 207 |
| abstract_inverted_index.which | 12 |
| abstract_inverted_index.yield | 208 |
| abstract_inverted_index.(GPP). | 226 |
| abstract_inverted_index.(MAE), | 139 |
| abstract_inverted_index.(MLR), | 66 |
| abstract_inverted_index.(eSIF) | 91 |
| abstract_inverted_index.0.935, | 163 |
| abstract_inverted_index.Global | 189 |
| abstract_inverted_index.better | 182, 211 |
| abstract_inverted_index.during | 10 |
| abstract_inverted_index.effect | 184 |
| abstract_inverted_index.energy | 9 |
| abstract_inverted_index.forest | 68 |
| abstract_inverted_index.higher | 260 |
| abstract_inverted_index.invert | 102 |
| abstract_inverted_index.linear | 64 |
| abstract_inverted_index.method | 53 |
| abstract_inverted_index.models | 75 |
| abstract_inverted_index.neural | 72 |
| abstract_inverted_index.random | 67 |
| abstract_inverted_index.space. | 198 |
| abstract_inverted_index.strong | 220 |
| abstract_inverted_index.theory | 94 |
| abstract_inverted_index.values | 161 |
| abstract_inverted_index.winter | 206 |
| abstract_inverted_index.(GOSIF) | 192 |
| abstract_inverted_index.(MODIS) | 122 |
| abstract_inverted_index.(RMSE). | 145 |
| abstract_inverted_index.Imaging | 120 |
| abstract_inverted_index.Primary | 224 |
| abstract_inverted_index.applied | 100 |
| abstract_inverted_index.between | 201 |
| abstract_inverted_index.fitting | 183 |
| abstract_inverted_index.growth. | 25 |
| abstract_inverted_index.include | 131 |
| abstract_inverted_index.metrics | 126 |
| abstract_inverted_index.network | 73 |
| abstract_inverted_index.others, | 155 |
| abstract_inverted_index.release | 6 |
| abstract_inverted_index.results | 148, 171 |
| abstract_inverted_index.scales. | 262 |
| abstract_inverted_index.spatial | 38, 41, 96, 106, 245, 261 |
| abstract_inverted_index.squared | 143 |
| abstract_inverted_index.support | 252 |
| abstract_inverted_index.Enhanced | 89 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.Multiple | 63 |
| abstract_inverted_index.Province | 113 |
| abstract_inverted_index.absolute | 137 |
| abstract_inverted_index.accuracy | 130 |
| abstract_inverted_index.existing | 28 |
| abstract_inverted_index.multiple | 50 |
| abstract_inverted_index.problems | 35 |
| abstract_inverted_index.products | 110, 180, 217 |
| abstract_inverted_index.proposes | 49 |
| abstract_inverted_index.provides | 250 |
| abstract_inverted_index.reliable | 242 |
| abstract_inverted_index.retrieve | 241 |
| abstract_inverted_index.superior | 15 |
| abstract_inverted_index.'OCO-2′ | 190 |
| abstract_inverted_index.(TROPOMI) | 88 |
| abstract_inverted_index.achieving | 156 |
| abstract_inverted_index.algorithm | 238 |
| abstract_inverted_index.assessing | 128 |
| abstract_inverted_index.considers | 55 |
| abstract_inverted_index.construct | 79 |
| abstract_inverted_index.problems, | 46 |
| abstract_inverted_index.retrieved | 30 |
| abstract_inverted_index.satellite | 29 |
| abstract_inverted_index.Instrument | 87 |
| abstract_inverted_index.Monitoring | 86 |
| abstract_inverted_index.evaluation | 125 |
| abstract_inverted_index.invariance | 98 |
| abstract_inverted_index.parameters | 51 |
| abstract_inverted_index.regression | 65 |
| abstract_inverted_index.resolution | 39, 107, 246 |
| abstract_inverted_index.structural | 57, 230 |
| abstract_inverted_index.vegetation | 18, 24 |
| abstract_inverted_index.application | 255 |
| abstract_inverted_index.chlorophyll | 1 |
| abstract_inverted_index.coefficient | 134 |
| abstract_inverted_index.considering | 228 |
| abstract_inverted_index.correlation | 200, 221 |
| abstract_inverted_index.demonstrate | 149 |
| abstract_inverted_index.downscaling | 52, 81, 129, 175, 178, 202 |
| abstract_inverted_index.effectively | 240 |
| abstract_inverted_index.outperforms | 154 |
| abstract_inverted_index.Productivity | 225 |
| abstract_inverted_index.TROPOspheric | 85 |
| abstract_inverted_index.experimental | 147 |
| abstract_inverted_index.fluorescence | 2 |
| abstract_inverted_index.successfully | 172 |
| abstract_inverted_index.Solar-induced | 0 |
| abstract_inverted_index.convolutional | 71 |
| abstract_inverted_index.determination | 133 |
| abstract_inverted_index.mW/m2/nm2/sr, | 165, 168 |
| abstract_inverted_index.physiological | 59, 232 |
| abstract_inverted_index.requirements. | 176 |
| abstract_inverted_index.respectively. | 169 |
| abstract_inverted_index.significantly | 14, 210 |
| abstract_inverted_index.discontinuity. | 42 |
| abstract_inverted_index.methodological | 251 |
| abstract_inverted_index.characteristics | 60, 233 |
| abstract_inverted_index.photosynthesis, | 11 |
| abstract_inverted_index.characterization | 22 |
| abstract_inverted_index.Spectroradiometer | 121 |
| abstract_inverted_index.Moderate-resolution | 119 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5058190564 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I211433327, https://openalex.org/I4210166499 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.64404684 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |