Research on Management of Lake Water Levels Based on Multi-Objective Genetic and PID Control Algorithm Article Swipe
A comprehensive optimization approach utilizing a multi-objective genetic algorithm and PID control algorithm is proposed for addressing water level management in lake systems. Taking the Great Lakes of North America as a case study, this research investigates dynamic regulation methods for lake water levels. Through analysis of monthly water level data from the lakes, an optimal water level calculation method specific to each lake is determined. Subsequently, a water level optimization model is developed with primary objectives of ensuring drinking water supply, supporting navigation, and preserving the ecological environment. The non-dominated sorting genetic algorithm (NSGA-II) is employed to solve the model and determine the optimal water levels for the Great Lakes. Recognizing the challenge of simultaneously achieving optimal water levels in the actual Great Lakes system, a PID control algorithm is utilized for water level adjustments. By establishing a dynamic water level change model, a PID controller is designed and its parameters are calibrated through numerous experiments to effectively maintain water levels within the optimal range. This research offers a scientific foundation and practical methodology for enhancing water level management in the Great Lakes, thereby contributing significantly to the sustainable utilization of lake water resources.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54097/18zv6w92
- https://hsetdata.com/index.php/ojs/article/download/887/829
- OA Status
- diamond
- References
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413359550
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413359550Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54097/18zv6w92Digital Object Identifier
- Title
-
Research on Management of Lake Water Levels Based on Multi-Objective Genetic and PID Control AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-02Full publication date if available
- Authors
-
Zhiwei HouList of authors in order
- Landing page
-
https://doi.org/10.54097/18zv6w92Publisher landing page
- PDF URL
-
https://hsetdata.com/index.php/ojs/article/download/887/829Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://hsetdata.com/index.php/ojs/article/download/887/829Direct OA link when available
- Concepts
-
PID controller, Genetic algorithm, Control (management), Computer science, Algorithm, Control theory (sociology), Control engineering, Engineering, Artificial intelligence, Temperature control, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
2Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413359550 |
|---|---|
| doi | https://doi.org/10.54097/18zv6w92 |
| ids.doi | https://doi.org/10.54097/18zv6w92 |
| ids.openalex | https://openalex.org/W4413359550 |
| fwci | 0.0 |
| type | article |
| title | Research on Management of Lake Water Levels Based on Multi-Objective Genetic and PID Control Algorithm |
| biblio.issue | |
| biblio.volume | 146 |
| biblio.last_page | 215 |
| biblio.first_page | 208 |
| topics[0].id | https://openalex.org/T10969 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9821000099182129 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Water resources management and optimization |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9704999923706055 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T12697 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9279999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Water Quality Monitoring Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47116090 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8476104140281677 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q716829 |
| concepts[0].display_name | PID controller |
| concepts[1].id | https://openalex.org/C8880873 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5346544981002808 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[1].display_name | Genetic algorithm |
| concepts[2].id | https://openalex.org/C2775924081 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4132576882839203 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[2].display_name | Control (management) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.39968442916870117 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3713924288749695 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C47446073 |
| concepts[5].level | 3 |
| concepts[5].score | 0.32582131028175354 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[5].display_name | Control theory (sociology) |
| concepts[6].id | https://openalex.org/C133731056 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2558985948562622 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[6].display_name | Control engineering |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.24915847182273865 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2083962857723236 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C536315585 |
| concepts[9].level | 2 |
| concepts[9].score | 0.16758987307548523 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7698332 |
| concepts[9].display_name | Temperature control |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.15748605132102966 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/pid-controller |
| keywords[0].score | 0.8476104140281677 |
| keywords[0].display_name | PID controller |
| keywords[1].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[1].score | 0.5346544981002808 |
| keywords[1].display_name | Genetic algorithm |
| keywords[2].id | https://openalex.org/keywords/control |
| keywords[2].score | 0.4132576882839203 |
| keywords[2].display_name | Control (management) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.39968442916870117 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.3713924288749695 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/control-theory |
| keywords[5].score | 0.32582131028175354 |
| keywords[5].display_name | Control theory (sociology) |
| keywords[6].id | https://openalex.org/keywords/control-engineering |
| keywords[6].score | 0.2558985948562622 |
| keywords[6].display_name | Control engineering |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.24915847182273865 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.2083962857723236 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/temperature-control |
| keywords[9].score | 0.16758987307548523 |
| keywords[9].display_name | Temperature control |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.15748605132102966 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.54097/18zv6w92 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387281017 |
| locations[0].source.issn | 2791-0210 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2791-0210 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Highlights in Science Engineering and Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://hsetdata.com/index.php/ojs/article/download/887/829 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Highlights in Science, Engineering and Technology |
| locations[0].landing_page_url | https://doi.org/10.54097/18zv6w92 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5068485778 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8675-7797 |
| authorships[0].author.display_name | Zhiwei Hou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zeyuan Hou |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hsetdata.com/index.php/ojs/article/download/887/829 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on Management of Lake Water Levels Based on Multi-Objective Genetic and PID Control Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10969 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9821000099182129 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Water resources management and optimization |
| related_works | https://openalex.org/W2002388147, https://openalex.org/W3098928304, https://openalex.org/W2394883510, https://openalex.org/W2150958483, https://openalex.org/W2165013373, https://openalex.org/W2121097709, https://openalex.org/W2922503265, https://openalex.org/W2023324176, https://openalex.org/W2576987672, https://openalex.org/W2167345368 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54097/18zv6w92 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387281017 |
| best_oa_location.source.issn | 2791-0210 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2791-0210 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Highlights in Science Engineering and Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://hsetdata.com/index.php/ojs/article/download/887/829 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Highlights in Science, Engineering and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.54097/18zv6w92 |
| primary_location.id | doi:10.54097/18zv6w92 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387281017 |
| primary_location.source.issn | 2791-0210 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2791-0210 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Highlights in Science Engineering and Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://hsetdata.com/index.php/ojs/article/download/887/829 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Highlights in Science, Engineering and Technology |
| primary_location.landing_page_url | https://doi.org/10.54097/18zv6w92 |
| publication_date | 2025-07-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3171196109, https://openalex.org/W3011758108 |
| referenced_works_count | 2 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 5, 31, 67, 126, 138, 144, 169 |
| abstract_inverted_index.By | 136 |
| abstract_inverted_index.an | 54 |
| abstract_inverted_index.as | 30 |
| abstract_inverted_index.in | 20, 120, 180 |
| abstract_inverted_index.is | 13, 64, 72, 95, 130, 147 |
| abstract_inverted_index.of | 27, 46, 77, 114, 191 |
| abstract_inverted_index.to | 61, 97, 157, 187 |
| abstract_inverted_index.PID | 10, 127, 145 |
| abstract_inverted_index.The | 89 |
| abstract_inverted_index.and | 9, 84, 101, 149, 172 |
| abstract_inverted_index.are | 152 |
| abstract_inverted_index.for | 15, 40, 107, 132, 175 |
| abstract_inverted_index.its | 150 |
| abstract_inverted_index.the | 24, 52, 86, 99, 103, 108, 112, 121, 163, 181, 188 |
| abstract_inverted_index.This | 166 |
| abstract_inverted_index.case | 32 |
| abstract_inverted_index.data | 50 |
| abstract_inverted_index.each | 62 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.lake | 21, 41, 63, 192 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.with | 74 |
| abstract_inverted_index.Great | 25, 109, 123, 182 |
| abstract_inverted_index.Lakes | 26, 124 |
| abstract_inverted_index.North | 28 |
| abstract_inverted_index.level | 18, 49, 57, 69, 134, 141, 178 |
| abstract_inverted_index.model | 71, 100 |
| abstract_inverted_index.solve | 98 |
| abstract_inverted_index.water | 17, 42, 48, 56, 68, 80, 105, 118, 133, 140, 160, 177, 193 |
| abstract_inverted_index.Lakes, | 183 |
| abstract_inverted_index.Lakes. | 110 |
| abstract_inverted_index.Taking | 23 |
| abstract_inverted_index.actual | 122 |
| abstract_inverted_index.change | 142 |
| abstract_inverted_index.lakes, | 53 |
| abstract_inverted_index.levels | 106, 119, 161 |
| abstract_inverted_index.method | 59 |
| abstract_inverted_index.model, | 143 |
| abstract_inverted_index.offers | 168 |
| abstract_inverted_index.range. | 165 |
| abstract_inverted_index.study, | 33 |
| abstract_inverted_index.within | 162 |
| abstract_inverted_index.America | 29 |
| abstract_inverted_index.Through | 44 |
| abstract_inverted_index.control | 11, 128 |
| abstract_inverted_index.dynamic | 37, 139 |
| abstract_inverted_index.genetic | 7, 92 |
| abstract_inverted_index.levels. | 43 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.monthly | 47 |
| abstract_inverted_index.optimal | 55, 104, 117, 164 |
| abstract_inverted_index.primary | 75 |
| abstract_inverted_index.sorting | 91 |
| abstract_inverted_index.supply, | 81 |
| abstract_inverted_index.system, | 125 |
| abstract_inverted_index.thereby | 184 |
| abstract_inverted_index.through | 154 |
| abstract_inverted_index.analysis | 45 |
| abstract_inverted_index.approach | 3 |
| abstract_inverted_index.designed | 148 |
| abstract_inverted_index.drinking | 79 |
| abstract_inverted_index.employed | 96 |
| abstract_inverted_index.ensuring | 78 |
| abstract_inverted_index.maintain | 159 |
| abstract_inverted_index.numerous | 155 |
| abstract_inverted_index.proposed | 14 |
| abstract_inverted_index.research | 35, 167 |
| abstract_inverted_index.specific | 60 |
| abstract_inverted_index.systems. | 22 |
| abstract_inverted_index.utilized | 131 |
| abstract_inverted_index.(NSGA-II) | 94 |
| abstract_inverted_index.achieving | 116 |
| abstract_inverted_index.algorithm | 8, 12, 93, 129 |
| abstract_inverted_index.challenge | 113 |
| abstract_inverted_index.determine | 102 |
| abstract_inverted_index.developed | 73 |
| abstract_inverted_index.enhancing | 176 |
| abstract_inverted_index.practical | 173 |
| abstract_inverted_index.utilizing | 4 |
| abstract_inverted_index.addressing | 16 |
| abstract_inverted_index.calibrated | 153 |
| abstract_inverted_index.controller | 146 |
| abstract_inverted_index.ecological | 87 |
| abstract_inverted_index.foundation | 171 |
| abstract_inverted_index.management | 19, 179 |
| abstract_inverted_index.objectives | 76 |
| abstract_inverted_index.parameters | 151 |
| abstract_inverted_index.preserving | 85 |
| abstract_inverted_index.regulation | 38 |
| abstract_inverted_index.resources. | 194 |
| abstract_inverted_index.scientific | 170 |
| abstract_inverted_index.supporting | 82 |
| abstract_inverted_index.Recognizing | 111 |
| abstract_inverted_index.calculation | 58 |
| abstract_inverted_index.determined. | 65 |
| abstract_inverted_index.effectively | 158 |
| abstract_inverted_index.experiments | 156 |
| abstract_inverted_index.methodology | 174 |
| abstract_inverted_index.navigation, | 83 |
| abstract_inverted_index.sustainable | 189 |
| abstract_inverted_index.utilization | 190 |
| abstract_inverted_index.adjustments. | 135 |
| abstract_inverted_index.contributing | 185 |
| abstract_inverted_index.environment. | 88 |
| abstract_inverted_index.establishing | 137 |
| abstract_inverted_index.investigates | 36 |
| abstract_inverted_index.optimization | 2, 70 |
| abstract_inverted_index.Subsequently, | 66 |
| abstract_inverted_index.comprehensive | 1 |
| abstract_inverted_index.non-dominated | 90 |
| abstract_inverted_index.significantly | 186 |
| abstract_inverted_index.simultaneously | 115 |
| abstract_inverted_index.multi-objective | 6 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5068485778 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.44250033 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |