Research on Modulation Recognition Method in Low SNR Based on LSTM Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2189/1/012003
Modulation mode recognition of radio signal is a committed step between signal detection and signal demodulation. At present, quite a lot studies have fully proved that deep learning algorithms can effectively identify the modulation pattern of radio signals. However, the sudden decline of recognition accuracy under the condition of low signal-to-noise ratio needs to be continuously studied and solved. Inspired by the excellent performance of recurrent neural network in signal recognition, this article optimizes and improves the existing system methods, realizes the noise reduction processing of low signal-to-noise ratio signals, and further solves the problem of low recognition accuracy. Through a large number of experimental tests using RML public dataset, the effectiveness of this paper is verified. The results show that the accuracy of modulation pattern recognition of low signal-to-noise ratio signals reaches an average of 27.2%. At last, the paper analyzes the existing problems and optimization points, and looks forward to the further research of relevant contents in the future.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2189/1/012003
- OA Status
- diamond
- Cited By
- 8
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4210987079
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4210987079Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2189/1/012003Digital Object Identifier
- Title
-
Research on Modulation Recognition Method in Low SNR Based on LSTMWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-01Full publication date if available
- Authors
-
Beiming Zhang, Guoping Chen, Chun JiangList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2189/1/012003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/2189/1/012003Direct OA link when available
- Concepts
-
Demodulation, Computer science, Modulation (music), SIGNAL (programming language), Noise (video), Artificial intelligence, Pattern recognition (psychology), Speech recognition, Signal-to-noise ratio (imaging), Noise reduction, Artificial neural network, Signal processing, Telecommunications, Acoustics, Channel (broadcasting), Radar, Programming language, Physics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4210987079 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2189/1/012003 |
| ids.doi | https://doi.org/10.1088/1742-6596/2189/1/012003 |
| ids.openalex | https://openalex.org/W4210987079 |
| fwci | 1.56639056 |
| type | article |
| title | Research on Modulation Recognition Method in Low SNR Based on LSTM |
| biblio.issue | 1 |
| biblio.volume | 2189 |
| biblio.last_page | 012003 |
| biblio.first_page | 012003 |
| topics[0].id | https://openalex.org/T12131 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Wireless Signal Modulation Classification |
| topics[1].id | https://openalex.org/T10891 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9776999950408936 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Radar Systems and Signal Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C195251586 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7956972718238831 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1185939 |
| concepts[0].display_name | Demodulation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6962209939956665 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C123079801 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6426668167114258 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q750240 |
| concepts[2].display_name | Modulation (music) |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6099317073822021 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5861560106277466 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5823711156845093 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5727764368057251 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C28490314 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5224860310554504 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[7].display_name | Speech recognition |
| concepts[8].id | https://openalex.org/C13944312 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4723663926124573 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7512748 |
| concepts[8].display_name | Signal-to-noise ratio (imaging) |
| concepts[9].id | https://openalex.org/C163294075 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45516881346702576 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[9].display_name | Noise reduction |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4328828752040863 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C104267543 |
| concepts[11].level | 3 |
| concepts[11].score | 0.41798219084739685 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q208163 |
| concepts[11].display_name | Signal processing |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1765369474887848 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C24890656 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07745540142059326 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[13].display_name | Acoustics |
| concepts[14].id | https://openalex.org/C127162648 |
| concepts[14].level | 2 |
| concepts[14].score | 0.059405773878097534 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[14].display_name | Channel (broadcasting) |
| concepts[15].id | https://openalex.org/C554190296 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[15].display_name | Radar |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/demodulation |
| keywords[0].score | 0.7956972718238831 |
| keywords[0].display_name | Demodulation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6962209939956665 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/modulation |
| keywords[2].score | 0.6426668167114258 |
| keywords[2].display_name | Modulation (music) |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.6099317073822021 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.5861560106277466 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5823711156845093 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5727764368057251 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/speech-recognition |
| keywords[7].score | 0.5224860310554504 |
| keywords[7].display_name | Speech recognition |
| keywords[8].id | https://openalex.org/keywords/signal-to-noise-ratio |
| keywords[8].score | 0.4723663926124573 |
| keywords[8].display_name | Signal-to-noise ratio (imaging) |
| keywords[9].id | https://openalex.org/keywords/noise-reduction |
| keywords[9].score | 0.45516881346702576 |
| keywords[9].display_name | Noise reduction |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.4328828752040863 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/signal-processing |
| keywords[11].score | 0.41798219084739685 |
| keywords[11].display_name | Signal processing |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.1765369474887848 |
| keywords[12].display_name | Telecommunications |
| keywords[13].id | https://openalex.org/keywords/acoustics |
| keywords[13].score | 0.07745540142059326 |
| keywords[13].display_name | Acoustics |
| keywords[14].id | https://openalex.org/keywords/channel |
| keywords[14].score | 0.059405773878097534 |
| keywords[14].display_name | Channel (broadcasting) |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2189/1/012003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2189/1/012003 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5077859478 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Beiming Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China |
| authorships[0].institutions[0].id | https://openalex.org/I183067930 |
| authorships[0].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Beiming Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China |
| authorships[1].author.id | https://openalex.org/A5100658928 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8370-5545 |
| authorships[1].author.display_name | Guoping Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guoping Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China |
| authorships[2].author.id | https://openalex.org/A5054927807 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1873-6385 |
| authorships[2].author.display_name | Chun Jiang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China |
| authorships[2].institutions[0].id | https://openalex.org/I183067930 |
| authorships[2].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Chun Jiang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/2189/1/012003 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on Modulation Recognition Method in Low SNR Based on LSTM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12131 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Wireless Signal Modulation Classification |
| related_works | https://openalex.org/W2360232140, https://openalex.org/W2092619848, https://openalex.org/W2000868090, https://openalex.org/W1495312443, https://openalex.org/W2056115307, https://openalex.org/W4320024908, https://openalex.org/W2355214987, https://openalex.org/W2352747044, https://openalex.org/W2771101860, https://openalex.org/W2328900997 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2189/1/012003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2189/1/012003 |
| primary_location.id | doi:10.1088/1742-6596/2189/1/012003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2189/1/012003 |
| publication_date | 2022-02-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2050080600, https://openalex.org/W2147893740, https://openalex.org/W2153538387, https://openalex.org/W2073967704, https://openalex.org/W98989907, https://openalex.org/W2272847350 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 8, 20, 101 |
| abstract_inverted_index.At | 17, 138 |
| abstract_inverted_index.an | 134 |
| abstract_inverted_index.be | 55 |
| abstract_inverted_index.by | 61 |
| abstract_inverted_index.in | 69, 159 |
| abstract_inverted_index.is | 7, 116 |
| abstract_inverted_index.of | 4, 36, 43, 49, 65, 86, 96, 104, 113, 124, 128, 136, 156 |
| abstract_inverted_index.to | 54, 152 |
| abstract_inverted_index.RML | 108 |
| abstract_inverted_index.The | 118 |
| abstract_inverted_index.and | 14, 58, 75, 91, 146, 149 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.lot | 21 |
| abstract_inverted_index.low | 50, 87, 97, 129 |
| abstract_inverted_index.the | 33, 40, 47, 62, 77, 82, 94, 111, 122, 140, 143, 153, 160 |
| abstract_inverted_index.deep | 27 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.mode | 2 |
| abstract_inverted_index.show | 120 |
| abstract_inverted_index.step | 10 |
| abstract_inverted_index.that | 26, 121 |
| abstract_inverted_index.this | 72, 114 |
| abstract_inverted_index.fully | 24 |
| abstract_inverted_index.large | 102 |
| abstract_inverted_index.last, | 139 |
| abstract_inverted_index.looks | 150 |
| abstract_inverted_index.needs | 53 |
| abstract_inverted_index.noise | 83 |
| abstract_inverted_index.paper | 115, 141 |
| abstract_inverted_index.quite | 19 |
| abstract_inverted_index.radio | 5, 37 |
| abstract_inverted_index.ratio | 52, 89, 131 |
| abstract_inverted_index.tests | 106 |
| abstract_inverted_index.under | 46 |
| abstract_inverted_index.using | 107 |
| abstract_inverted_index.27.2%. | 137 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.number | 103 |
| abstract_inverted_index.proved | 25 |
| abstract_inverted_index.public | 109 |
| abstract_inverted_index.signal | 6, 12, 15, 70 |
| abstract_inverted_index.solves | 93 |
| abstract_inverted_index.sudden | 41 |
| abstract_inverted_index.system | 79 |
| abstract_inverted_index.Through | 100 |
| abstract_inverted_index.article | 73 |
| abstract_inverted_index.average | 135 |
| abstract_inverted_index.between | 11 |
| abstract_inverted_index.decline | 42 |
| abstract_inverted_index.forward | 151 |
| abstract_inverted_index.further | 92, 154 |
| abstract_inverted_index.future. | 161 |
| abstract_inverted_index.network | 68 |
| abstract_inverted_index.pattern | 35, 126 |
| abstract_inverted_index.points, | 148 |
| abstract_inverted_index.problem | 95 |
| abstract_inverted_index.reaches | 133 |
| abstract_inverted_index.results | 119 |
| abstract_inverted_index.signals | 132 |
| abstract_inverted_index.solved. | 59 |
| abstract_inverted_index.studied | 57 |
| abstract_inverted_index.studies | 22 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.Inspired | 60 |
| abstract_inverted_index.accuracy | 45, 123 |
| abstract_inverted_index.analyzes | 142 |
| abstract_inverted_index.contents | 158 |
| abstract_inverted_index.dataset, | 110 |
| abstract_inverted_index.existing | 78, 144 |
| abstract_inverted_index.identify | 32 |
| abstract_inverted_index.improves | 76 |
| abstract_inverted_index.learning | 28 |
| abstract_inverted_index.methods, | 80 |
| abstract_inverted_index.present, | 18 |
| abstract_inverted_index.problems | 145 |
| abstract_inverted_index.realizes | 81 |
| abstract_inverted_index.relevant | 157 |
| abstract_inverted_index.research | 155 |
| abstract_inverted_index.signals, | 90 |
| abstract_inverted_index.signals. | 38 |
| abstract_inverted_index.accuracy. | 99 |
| abstract_inverted_index.committed | 9 |
| abstract_inverted_index.condition | 48 |
| abstract_inverted_index.detection | 13 |
| abstract_inverted_index.excellent | 63 |
| abstract_inverted_index.optimizes | 74 |
| abstract_inverted_index.recurrent | 66 |
| abstract_inverted_index.reduction | 84 |
| abstract_inverted_index.verified. | 117 |
| abstract_inverted_index.Modulation | 1 |
| abstract_inverted_index.algorithms | 29 |
| abstract_inverted_index.modulation | 34, 125 |
| abstract_inverted_index.processing | 85 |
| abstract_inverted_index.effectively | 31 |
| abstract_inverted_index.performance | 64 |
| abstract_inverted_index.recognition | 3, 44, 98, 127 |
| abstract_inverted_index.continuously | 56 |
| abstract_inverted_index.experimental | 105 |
| abstract_inverted_index.optimization | 147 |
| abstract_inverted_index.recognition, | 71 |
| abstract_inverted_index.demodulation. | 16 |
| abstract_inverted_index.effectiveness | 112 |
| abstract_inverted_index.signal-to-noise | 51, 88, 130 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5054927807 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I183067930 |
| citation_normalized_percentile.value | 0.81315758 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |