Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.01062
High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.01062
- https://arxiv.org/pdf/2412.01062
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405033842
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405033842Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.01062Digital Object Identifier
- Title
-
Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-02Full publication date if available
- Authors
-
Yuxin Fan, Zhuohuan Hu, Lei Fu, Cheng Yu, Liyang Wang, Yuxiang WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.01062Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.01062Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.01062Direct OA link when available
- Concepts
-
Computer science, Machine learning, Algorithm, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405033842 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.01062 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.01062 |
| ids.openalex | https://openalex.org/W4405033842 |
| fwci | |
| type | preprint |
| title | Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14139 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.33959999680519104 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1403 |
| topics[0].subfield.display_name | Business and International Management |
| topics[0].display_name | E-commerce and Technology Innovations |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7214027643203735 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.42248648405075073 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.42006468772888184 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3810279369354248 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7214027643203735 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.42248648405075073 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.42006468772888184 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3810279369354248 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.01062 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.01062 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.01062 |
| locations[1].id | doi:10.48550/arxiv.2412.01062 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.01062 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101712590 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1561-1472 |
| authorships[0].author.display_name | Yuxin Fan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fan, Yuxin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075175445 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2453-4977 |
| authorships[1].author.display_name | Zhuohuan Hu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hu, Zhuohuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023765100 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8464-2144 |
| authorships[2].author.display_name | Lei Fu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fu, Lei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026930299 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1039-1300 |
| authorships[3].author.display_name | Cheng Yu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng, Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5089456973 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9820-3310 |
| authorships[4].author.display_name | Liyang Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Liyang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100394394 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6945-6431 |
| authorships[5].author.display_name | Yuxiang Wang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wang, Yuxiang |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.01062 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-05T00:00:00 |
| display_name | Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14139 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.33959999680519104 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1403 |
| primary_topic.subfield.display_name | Business and International Management |
| primary_topic.display_name | E-commerce and Technology Innovations |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.01062 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.01062 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.01062 |
| primary_location.id | pmh:oai:arXiv.org:2412.01062 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.01062 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.01062 |
| publication_date | 2024-12-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 22, 102, 124 |
| abstract_inverted_index.In | 145 |
| abstract_inverted_index.an | 85 |
| abstract_inverted_index.in | 46, 63, 101, 123, 188, 199 |
| abstract_inverted_index.is | 38, 55, 182 |
| abstract_inverted_index.of | 18, 30, 35, 44, 75, 115, 139, 164, 184, 191, 201 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.to | 39, 94, 147, 160 |
| abstract_inverted_index.The | 14, 33, 50, 117, 175 |
| abstract_inverted_index.and | 6, 16, 59, 68, 96, 131, 142, 166, 204 |
| abstract_inverted_index.are | 121 |
| abstract_inverted_index.for | 57 |
| abstract_inverted_index.has | 156 |
| abstract_inverted_index.its | 98, 197 |
| abstract_inverted_index.set | 100 |
| abstract_inverted_index.the | 11, 28, 41, 73, 78, 92, 106, 112, 136, 152, 162, 172, 180, 189 |
| abstract_inverted_index.This | 82 |
| abstract_inverted_index.been | 157 |
| abstract_inverted_index.data | 19, 45, 62, 107, 140 |
| abstract_inverted_index.deep | 149 |
| abstract_inverted_index.fast | 128 |
| abstract_inverted_index.most | 79 |
| abstract_inverted_index.real | 64 |
| abstract_inverted_index.that | 134, 179 |
| abstract_inverted_index.this | 31, 36 |
| abstract_inverted_index.thus | 110 |
| abstract_inverted_index.time | 65 |
| abstract_inverted_index.when | 105 |
| abstract_inverted_index.with | 72 |
| abstract_inverted_index.work | 37 |
| abstract_inverted_index.(HFT) | 2 |
| abstract_inverted_index.data. | 116 |
| abstract_inverted_index.exert | 21 |
| abstract_inverted_index.input | 108 |
| abstract_inverted_index.model | 181 |
| abstract_inverted_index.speed | 203 |
| abstract_inverted_index.terms | 200 |
| abstract_inverted_index.time. | 174 |
| abstract_inverted_index.which | 90 |
| abstract_inverted_index.adjust | 97 |
| abstract_inverted_index.direct | 23 |
| abstract_inverted_index.domain | 9 |
| abstract_inverted_index.field. | 32 |
| abstract_inverted_index.layers | 130 |
| abstract_inverted_index.manner | 104 |
| abstract_inverted_index.market | 61, 193 |
| abstract_inverted_index.neural | 119, 153 |
| abstract_inverted_index.number | 163 |
| abstract_inverted_index.output | 143 |
| abstract_inverted_index.system | 93 |
| abstract_inverted_index.timely | 103 |
| abstract_inverted_index.weight | 70 |
| abstract_inverted_index.within | 10 |
| abstract_inverted_index.capable | 183 |
| abstract_inverted_index.context | 190 |
| abstract_inverted_index.dynamic | 51 |
| abstract_inverted_index.employs | 84 |
| abstract_inverted_index.enables | 91 |
| abstract_inverted_index.feature | 52, 69, 87, 99 |
| abstract_inverted_index.method, | 89 |
| abstract_inverted_index.models, | 151 |
| abstract_inverted_index.modular | 125 |
| abstract_inverted_index.network | 154 |
| abstract_inverted_index.pivotal | 5 |
| abstract_inverted_index.process | 83 |
| abstract_inverted_index.pruning | 132 |
| abstract_inverted_index.respond | 95 |
| abstract_inverted_index.results | 177 |
| abstract_inverted_index.revenue | 205 |
| abstract_inverted_index.thereby | 169, 195 |
| abstract_inverted_index.through | 66 |
| abstract_inverted_index.trading | 1, 48 |
| abstract_inverted_index.varying | 192 |
| abstract_inverted_index.accuracy | 17 |
| abstract_inverted_index.adaptive | 86 |
| abstract_inverted_index.changes, | 109 |
| abstract_inverted_index.contrast | 146 |
| abstract_inverted_index.designed | 122, 159 |
| abstract_inverted_index.ensuring | 111 |
| abstract_inverted_index.fashion, | 126 |
| abstract_inverted_index.learning | 150 |
| abstract_inverted_index.markedly | 170 |
| abstract_inverted_index.markets. | 13 |
| abstract_inverted_index.minimise | 161 |
| abstract_inverted_index.networks | 120 |
| abstract_inverted_index.optimise | 40 |
| abstract_inverted_index.reducing | 171 |
| abstract_inverted_index.relevant | 80 |
| abstract_inverted_index.velocity | 15 |
| abstract_inverted_index.analysing | 60 |
| abstract_inverted_index.analysis, | 71 |
| abstract_inverted_index.efficient | 113 |
| abstract_inverted_index.features. | 81 |
| abstract_inverted_index.financial | 12 |
| abstract_inverted_index.inference | 173 |
| abstract_inverted_index.influence | 24 |
| abstract_inverted_index.intensely | 7 |
| abstract_inverted_index.mechanism | 54 |
| abstract_inverted_index.objective | 34, 74 |
| abstract_inverted_index.real-time | 42 |
| abstract_inverted_index.selecting | 77 |
| abstract_inverted_index.selection | 53 |
| abstract_inverted_index.advantages | 198 |
| abstract_inverted_index.clustering | 67 |
| abstract_inverted_index.completion | 138 |
| abstract_inverted_index.comprising | 127 |
| abstract_inverted_index.consistent | 186 |
| abstract_inverted_index.extraction | 88 |
| abstract_inverted_index.facilitate | 135 |
| abstract_inverted_index.monitoring | 58 |
| abstract_inverted_index.parameters | 165 |
| abstract_inverted_index.processing | 20, 43, 141, 202 |
| abstract_inverted_index.represents | 3 |
| abstract_inverted_index.techniques | 133 |
| abstract_inverted_index.algorithms. | 49 |
| abstract_inverted_index.competitive | 8 |
| abstract_inverted_index.complexity, | 168 |
| abstract_inverted_index.conditions, | 194 |
| abstract_inverted_index.demonstrate | 178 |
| abstract_inverted_index.expeditious | 137 |
| abstract_inverted_index.lightweight | 118 |
| abstract_inverted_index.maintaining | 185 |
| abstract_inverted_index.performance | 187 |
| abstract_inverted_index.prediction. | 144 |
| abstract_inverted_index.responsible | 56 |
| abstract_inverted_index.utilisation | 114 |
| abstract_inverted_index.architecture | 155 |
| abstract_inverted_index.conventional | 148 |
| abstract_inverted_index.enhancement. | 206 |
| abstract_inverted_index.experimental | 176 |
| abstract_inverted_index.illustrating | 196 |
| abstract_inverted_index.significance | 29 |
| abstract_inverted_index.specifically | 158 |
| abstract_inverted_index.underscoring | 27 |
| abstract_inverted_index.automatically | 76 |
| abstract_inverted_index.computational | 167 |
| abstract_inverted_index.convolutional | 129 |
| abstract_inverted_index.High-frequency | 0 |
| abstract_inverted_index.high-frequency | 47 |
| abstract_inverted_index.profitability, | 26 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |