Research on the City Network Structure in the Yellow River Basin in China Based on Two-Way Time Distance Gravity Model and Social Network Analysis Method Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1155/2020/6680954
Modern cities form city networks through complex social ties. City network research is widely applied to guide regional planning, infrastructure construction, and resource allocation. China put forward the Yellow River Basin Development Strategy in 2019, but no research has been conducted on regional social connections among cities. Based on the gravity model modified by two-way “time distance” between cities, this is the first study to empirically examine the intensity and structure of the entire city network in the Yellow River basin using the social network analysis method and ArcGIS software. The connection rules of the cross-city transfer of city officials in the basin are also investigated to illustrate the official ties between cities. The results suggest that the intensity of two-way connections between cities is generally low in the Yellow River basin and there is a positive correlation between city network development level and regional economic development level. The development gap between cities on the north and south banks is larger than that between the east and west regions, and some cities in the middle and upper reaches of the river are marginalized in the network. The status of the central cities in the Yellow River basin is distinct, but their connecting and leading abilities are not strong, showing an inverted T-shaped spatial distribution. The subgroups of city networks have strong internal connections, while the connection among subgroups is weak and the development shows a partitioned and fragmented pattern, making it difficult to form linkages among the upper, middle, and lower reaches. The “beaded chain” spatial development strategy can be adopted in the river basin planning, giving priority to strengthening the links within subgroups of cities and among adjacent subgroups, building central city chains, and reinforcing the overall basin management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2020/6680954
- https://downloads.hindawi.com/journals/complexity/2020/6680954.pdf
- OA Status
- gold
- Cited By
- 17
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3117559611
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3117559611Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2020/6680954Digital Object Identifier
- Title
-
Research on the City Network Structure in the Yellow River Basin in China Based on Two-Way Time Distance Gravity Model and Social Network Analysis MethodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-22Full publication date if available
- Authors
-
Duo Chai, Dong Zhang, Yonghao Sun, Shan YangList of authors in order
- Landing page
-
https://doi.org/10.1155/2020/6680954Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/complexity/2020/6680954.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/complexity/2020/6680954.pdfDirect OA link when available
- Concepts
-
China, Structural basin, Geography, Resource (disambiguation), Social network analysis, Drainage basin, Social network (sociolinguistics), Gravity model of trade, Economic geography, Regional science, Network structure, Connection (principal bundle), Business, Computer science, Geology, Cartography, Social media, Paleontology, Machine learning, Structural engineering, Engineering, Computer network, Archaeology, International trade, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 8, 2022: 3, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3117559611 |
|---|---|
| doi | https://doi.org/10.1155/2020/6680954 |
| ids.doi | https://doi.org/10.1155/2020/6680954 |
| ids.mag | 3117559611 |
| ids.openalex | https://openalex.org/W3117559611 |
| fwci | 12.19460591 |
| type | article |
| title | Research on the City Network Structure in the Yellow River Basin in China Based on Two-Way Time Distance Gravity Model and Social Network Analysis Method |
| awards[0].id | https://openalex.org/G6744187197 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 71974220 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2020 |
| biblio.last_page | 19 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12483 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9943000078201294 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3322 |
| topics[0].subfield.display_name | Urban Studies |
| topics[0].display_name | Global Urban Networks and Dynamics |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T10628 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9811999797821045 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3320 |
| topics[2].subfield.display_name | Political Science and International Relations |
| topics[2].display_name | China's Socioeconomic Reforms and Governance |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | USD |
| apc_list.value_usd | 2300 |
| apc_paid.value | 2300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2300 |
| concepts[0].id | https://openalex.org/C191935318 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7797081470489502 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[0].display_name | China |
| concepts[1].id | https://openalex.org/C109007969 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6546010971069336 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q749565 |
| concepts[1].display_name | Structural basin |
| concepts[2].id | https://openalex.org/C205649164 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5197186470031738 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[2].display_name | Geography |
| concepts[3].id | https://openalex.org/C206345919 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5195894241333008 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[3].display_name | Resource (disambiguation) |
| concepts[4].id | https://openalex.org/C114713312 |
| concepts[4].level | 3 |
| concepts[4].score | 0.49413183331489563 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7551269 |
| concepts[4].display_name | Social network analysis |
| concepts[5].id | https://openalex.org/C126645576 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4880930185317993 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q166620 |
| concepts[5].display_name | Drainage basin |
| concepts[6].id | https://openalex.org/C4727928 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4741860330104828 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17164759 |
| concepts[6].display_name | Social network (sociolinguistics) |
| concepts[7].id | https://openalex.org/C87889798 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4598146378993988 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1543986 |
| concepts[7].display_name | Gravity model of trade |
| concepts[8].id | https://openalex.org/C26271046 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45898139476776123 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q187097 |
| concepts[8].display_name | Economic geography |
| concepts[9].id | https://openalex.org/C148383697 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4221307635307312 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1781695 |
| concepts[9].display_name | Regional science |
| concepts[10].id | https://openalex.org/C2988224531 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4139055609703064 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q20830730 |
| concepts[10].display_name | Network structure |
| concepts[11].id | https://openalex.org/C13355873 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4124268591403961 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920850 |
| concepts[11].display_name | Connection (principal bundle) |
| concepts[12].id | https://openalex.org/C144133560 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2543429136276245 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[12].display_name | Business |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.24548593163490295 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.17460864782333374 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C58640448 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1354498267173767 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[15].display_name | Cartography |
| concepts[16].id | https://openalex.org/C518677369 |
| concepts[16].level | 2 |
| concepts[16].score | 0.11512488126754761 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[16].display_name | Social media |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C119857082 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[18].display_name | Machine learning |
| concepts[19].id | https://openalex.org/C66938386 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[19].display_name | Structural engineering |
| concepts[20].id | https://openalex.org/C127413603 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[20].display_name | Engineering |
| concepts[21].id | https://openalex.org/C31258907 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[21].display_name | Computer network |
| concepts[22].id | https://openalex.org/C166957645 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[22].display_name | Archaeology |
| concepts[23].id | https://openalex.org/C155202549 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q178803 |
| concepts[23].display_name | International trade |
| concepts[24].id | https://openalex.org/C136764020 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[24].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/china |
| keywords[0].score | 0.7797081470489502 |
| keywords[0].display_name | China |
| keywords[1].id | https://openalex.org/keywords/structural-basin |
| keywords[1].score | 0.6546010971069336 |
| keywords[1].display_name | Structural basin |
| keywords[2].id | https://openalex.org/keywords/geography |
| keywords[2].score | 0.5197186470031738 |
| keywords[2].display_name | Geography |
| keywords[3].id | https://openalex.org/keywords/resource |
| keywords[3].score | 0.5195894241333008 |
| keywords[3].display_name | Resource (disambiguation) |
| keywords[4].id | https://openalex.org/keywords/social-network-analysis |
| keywords[4].score | 0.49413183331489563 |
| keywords[4].display_name | Social network analysis |
| keywords[5].id | https://openalex.org/keywords/drainage-basin |
| keywords[5].score | 0.4880930185317993 |
| keywords[5].display_name | Drainage basin |
| keywords[6].id | https://openalex.org/keywords/social-network |
| keywords[6].score | 0.4741860330104828 |
| keywords[6].display_name | Social network (sociolinguistics) |
| keywords[7].id | https://openalex.org/keywords/gravity-model-of-trade |
| keywords[7].score | 0.4598146378993988 |
| keywords[7].display_name | Gravity model of trade |
| keywords[8].id | https://openalex.org/keywords/economic-geography |
| keywords[8].score | 0.45898139476776123 |
| keywords[8].display_name | Economic geography |
| keywords[9].id | https://openalex.org/keywords/regional-science |
| keywords[9].score | 0.4221307635307312 |
| keywords[9].display_name | Regional science |
| keywords[10].id | https://openalex.org/keywords/network-structure |
| keywords[10].score | 0.4139055609703064 |
| keywords[10].display_name | Network structure |
| keywords[11].id | https://openalex.org/keywords/connection |
| keywords[11].score | 0.4124268591403961 |
| keywords[11].display_name | Connection (principal bundle) |
| keywords[12].id | https://openalex.org/keywords/business |
| keywords[12].score | 0.2543429136276245 |
| keywords[12].display_name | Business |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.24548593163490295 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.17460864782333374 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/cartography |
| keywords[15].score | 0.1354498267173767 |
| keywords[15].display_name | Cartography |
| keywords[16].id | https://openalex.org/keywords/social-media |
| keywords[16].score | 0.11512488126754761 |
| keywords[16].display_name | Social media |
| language | en |
| locations[0].id | doi:10.1155/2020/6680954 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S207319443 |
| locations[0].source.issn | 1076-2787, 1099-0526 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1076-2787 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complexity |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/complexity/2020/6680954.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complexity |
| locations[0].landing_page_url | https://doi.org/10.1155/2020/6680954 |
| locations[1].id | pmh:oai:doaj.org/article:7dead81198ca407da7f6b63a212a837f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complexity, Vol 2020 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/7dead81198ca407da7f6b63a212a837f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5038675099 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1427-2125 |
| authorships[0].author.display_name | Duo Chai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I137867983 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| authorships[0].institutions[0].id | https://openalex.org/I137867983 |
| authorships[0].institutions[0].ror | https://ror.org/008e3hf02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I137867983 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Central University of Finance and Economics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duo Chai |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| authorships[1].author.id | https://openalex.org/A5101618925 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6136-2775 |
| authorships[1].author.display_name | Dong Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I137867983 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| authorships[1].institutions[0].id | https://openalex.org/I137867983 |
| authorships[1].institutions[0].ror | https://ror.org/008e3hf02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I137867983 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Central University of Finance and Economics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dong Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| authorships[2].author.id | https://openalex.org/A5100534915 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yonghao Sun |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I137867983 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| authorships[2].institutions[0].id | https://openalex.org/I137867983 |
| authorships[2].institutions[0].ror | https://ror.org/008e3hf02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I137867983 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Central University of Finance and Economics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yonghao Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| authorships[3].author.id | https://openalex.org/A5112108095 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shan Yang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I137867983 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| authorships[3].institutions[0].id | https://openalex.org/I137867983 |
| authorships[3].institutions[0].ror | https://ror.org/008e3hf02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I137867983 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Central University of Finance and Economics |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shan Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Government, Central University of Finance and Economics, Beijing 100081, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/complexity/2020/6680954.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on the City Network Structure in the Yellow River Basin in China Based on Two-Way Time Distance Gravity Model and Social Network Analysis Method |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12483 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9943000078201294 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3322 |
| primary_topic.subfield.display_name | Urban Studies |
| primary_topic.display_name | Global Urban Networks and Dynamics |
| related_works | https://openalex.org/W2952662149, https://openalex.org/W2793616590, https://openalex.org/W2183090405, https://openalex.org/W2065835655, https://openalex.org/W2075666982, https://openalex.org/W3160699245, https://openalex.org/W2782955270, https://openalex.org/W2349928170, https://openalex.org/W1594712698, https://openalex.org/W2499535628 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2020/6680954 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S207319443 |
| best_oa_location.source.issn | 1076-2787, 1099-0526 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1076-2787 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complexity |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/complexity/2020/6680954.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complexity |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2020/6680954 |
| primary_location.id | doi:10.1155/2020/6680954 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S207319443 |
| primary_location.source.issn | 1076-2787, 1099-0526 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1076-2787 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complexity |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/complexity/2020/6680954.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complexity |
| primary_location.landing_page_url | https://doi.org/10.1155/2020/6680954 |
| publication_date | 2020-12-22 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1780103906, https://openalex.org/W2337859520, https://openalex.org/W2017468625, https://openalex.org/W2354981919, https://openalex.org/W2139062556, https://openalex.org/W2079480629, https://openalex.org/W2039103323, https://openalex.org/W2087692199, https://openalex.org/W2136846273, https://openalex.org/W3014926255, https://openalex.org/W2030649536, https://openalex.org/W7020780999, https://openalex.org/W2391688154, https://openalex.org/W2364028881, https://openalex.org/W2393668114, https://openalex.org/W2371045870, https://openalex.org/W2374090290, https://openalex.org/W7043287545, https://openalex.org/W2147738091, https://openalex.org/W2154968164, https://openalex.org/W7014910373, https://openalex.org/W3049667020, https://openalex.org/W2353308259, https://openalex.org/W2386573672, https://openalex.org/W2262759381, https://openalex.org/W2388123391 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 135, 234 |
| abstract_inverted_index.an | 209 |
| abstract_inverted_index.be | 259 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 33, 76, 100, 127, 172, 183, 192, 261 |
| abstract_inverted_index.is | 12, 60, 124, 134, 159, 197, 228 |
| abstract_inverted_index.it | 240 |
| abstract_inverted_index.no | 36 |
| abstract_inverted_index.of | 71, 93, 97, 119, 178, 188, 216, 274 |
| abstract_inverted_index.on | 41, 48, 153 |
| abstract_inverted_index.to | 15, 64, 106, 242, 268 |
| abstract_inverted_index.The | 90, 113, 148, 186, 214, 252 |
| abstract_inverted_index.and | 21, 69, 87, 132, 143, 156, 166, 169, 175, 202, 230, 236, 249, 276, 284 |
| abstract_inverted_index.are | 103, 181, 205 |
| abstract_inverted_index.but | 35, 199 |
| abstract_inverted_index.can | 258 |
| abstract_inverted_index.gap | 150 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.low | 126 |
| abstract_inverted_index.not | 206 |
| abstract_inverted_index.put | 25 |
| abstract_inverted_index.the | 27, 49, 61, 67, 72, 77, 82, 94, 101, 108, 117, 128, 154, 164, 173, 179, 184, 189, 193, 224, 231, 246, 262, 270, 286 |
| abstract_inverted_index.City | 9 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.been | 39 |
| abstract_inverted_index.city | 3, 74, 98, 139, 217, 282 |
| abstract_inverted_index.east | 165 |
| abstract_inverted_index.form | 2, 243 |
| abstract_inverted_index.have | 219 |
| abstract_inverted_index.some | 170 |
| abstract_inverted_index.than | 161 |
| abstract_inverted_index.that | 116, 162 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.ties | 110 |
| abstract_inverted_index.weak | 229 |
| abstract_inverted_index.west | 167 |
| abstract_inverted_index.2019, | 34 |
| abstract_inverted_index.Based | 47 |
| abstract_inverted_index.Basin | 30 |
| abstract_inverted_index.China | 24 |
| abstract_inverted_index.River | 29, 79, 130, 195 |
| abstract_inverted_index.among | 45, 226, 245, 277 |
| abstract_inverted_index.banks | 158 |
| abstract_inverted_index.basin | 80, 102, 131, 196, 264, 288 |
| abstract_inverted_index.first | 62 |
| abstract_inverted_index.guide | 16 |
| abstract_inverted_index.level | 142 |
| abstract_inverted_index.links | 271 |
| abstract_inverted_index.lower | 250 |
| abstract_inverted_index.model | 51 |
| abstract_inverted_index.north | 155 |
| abstract_inverted_index.river | 180, 263 |
| abstract_inverted_index.rules | 92 |
| abstract_inverted_index.shows | 233 |
| abstract_inverted_index.south | 157 |
| abstract_inverted_index.study | 63 |
| abstract_inverted_index.their | 200 |
| abstract_inverted_index.there | 133 |
| abstract_inverted_index.ties. | 8 |
| abstract_inverted_index.upper | 176 |
| abstract_inverted_index.using | 81 |
| abstract_inverted_index.while | 223 |
| abstract_inverted_index.ArcGIS | 88 |
| abstract_inverted_index.Modern | 0 |
| abstract_inverted_index.Yellow | 28, 78, 129, 194 |
| abstract_inverted_index.cities | 1, 123, 152, 171, 191, 275 |
| abstract_inverted_index.entire | 73 |
| abstract_inverted_index.giving | 266 |
| abstract_inverted_index.larger | 160 |
| abstract_inverted_index.level. | 147 |
| abstract_inverted_index.making | 239 |
| abstract_inverted_index.method | 86 |
| abstract_inverted_index.middle | 174 |
| abstract_inverted_index.social | 7, 43, 83 |
| abstract_inverted_index.status | 187 |
| abstract_inverted_index.strong | 220 |
| abstract_inverted_index.upper, | 247 |
| abstract_inverted_index.widely | 13 |
| abstract_inverted_index.within | 272 |
| abstract_inverted_index.adopted | 260 |
| abstract_inverted_index.applied | 14 |
| abstract_inverted_index.between | 57, 111, 122, 138, 151, 163 |
| abstract_inverted_index.central | 190, 281 |
| abstract_inverted_index.chains, | 283 |
| abstract_inverted_index.cities, | 58 |
| abstract_inverted_index.cities. | 46, 112 |
| abstract_inverted_index.complex | 6 |
| abstract_inverted_index.examine | 66 |
| abstract_inverted_index.forward | 26 |
| abstract_inverted_index.gravity | 50 |
| abstract_inverted_index.leading | 203 |
| abstract_inverted_index.middle, | 248 |
| abstract_inverted_index.network | 10, 75, 84, 140 |
| abstract_inverted_index.overall | 287 |
| abstract_inverted_index.reaches | 177 |
| abstract_inverted_index.results | 114 |
| abstract_inverted_index.showing | 208 |
| abstract_inverted_index.spatial | 212, 255 |
| abstract_inverted_index.strong, | 207 |
| abstract_inverted_index.suggest | 115 |
| abstract_inverted_index.through | 5 |
| abstract_inverted_index.two-way | 54, 120 |
| abstract_inverted_index.“time | 55 |
| abstract_inverted_index.Strategy | 32 |
| abstract_inverted_index.T-shaped | 211 |
| abstract_inverted_index.adjacent | 278 |
| abstract_inverted_index.analysis | 85 |
| abstract_inverted_index.building | 280 |
| abstract_inverted_index.chain” | 254 |
| abstract_inverted_index.economic | 145 |
| abstract_inverted_index.internal | 221 |
| abstract_inverted_index.inverted | 210 |
| abstract_inverted_index.linkages | 244 |
| abstract_inverted_index.modified | 52 |
| abstract_inverted_index.network. | 185 |
| abstract_inverted_index.networks | 4, 218 |
| abstract_inverted_index.official | 109 |
| abstract_inverted_index.pattern, | 238 |
| abstract_inverted_index.positive | 136 |
| abstract_inverted_index.priority | 267 |
| abstract_inverted_index.reaches. | 251 |
| abstract_inverted_index.regional | 17, 42, 144 |
| abstract_inverted_index.regions, | 168 |
| abstract_inverted_index.research | 11, 37 |
| abstract_inverted_index.resource | 22 |
| abstract_inverted_index.strategy | 257 |
| abstract_inverted_index.transfer | 96 |
| abstract_inverted_index.abilities | 204 |
| abstract_inverted_index.conducted | 40 |
| abstract_inverted_index.difficult | 241 |
| abstract_inverted_index.distinct, | 198 |
| abstract_inverted_index.generally | 125 |
| abstract_inverted_index.intensity | 68, 118 |
| abstract_inverted_index.officials | 99 |
| abstract_inverted_index.planning, | 18, 265 |
| abstract_inverted_index.software. | 89 |
| abstract_inverted_index.structure | 70 |
| abstract_inverted_index.subgroups | 215, 227, 273 |
| abstract_inverted_index.“beaded | 253 |
| abstract_inverted_index.connecting | 201 |
| abstract_inverted_index.connection | 91, 225 |
| abstract_inverted_index.cross-city | 95 |
| abstract_inverted_index.fragmented | 237 |
| abstract_inverted_index.illustrate | 107 |
| abstract_inverted_index.subgroups, | 279 |
| abstract_inverted_index.Development | 31 |
| abstract_inverted_index.allocation. | 23 |
| abstract_inverted_index.connections | 44, 121 |
| abstract_inverted_index.correlation | 137 |
| abstract_inverted_index.development | 141, 146, 149, 232, 256 |
| abstract_inverted_index.distance” | 56 |
| abstract_inverted_index.empirically | 65 |
| abstract_inverted_index.management. | 289 |
| abstract_inverted_index.partitioned | 235 |
| abstract_inverted_index.reinforcing | 285 |
| abstract_inverted_index.connections, | 222 |
| abstract_inverted_index.investigated | 105 |
| abstract_inverted_index.marginalized | 182 |
| abstract_inverted_index.construction, | 20 |
| abstract_inverted_index.distribution. | 213 |
| abstract_inverted_index.strengthening | 269 |
| abstract_inverted_index.infrastructure | 19 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5038675099 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I137867983 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.98169197 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |