Research on the Optimization of TP2 Copper Tube Drawing Process Parameters Based on Particle Swarm Algorithm and Radial Basis Neural Network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/app142311203
After rolling, TP2 copper tubes exhibit defects such as sawtooth marks, cracks, and uneven wall thickness after joint drawing, which severely affects the quality of the finished copper tubes. To study the effect of drawing process parameters on wall thickness uniformity, an ultrasonic detection platform for measuring the wall thickness of rolled copper tubes was constructed to verify the accuracy of the experimental equipment. Using the detected data, a finite element model of drawn copper tubes was established, and numerical simulation studies were conducted to analyze the influence of parameters such as outer die taper angle, drawing speed, and friction coefficient on drawing force, maximum temperature, average wall thickness, and wall thickness uniformity. To address the problem of the large number of finite element model meshes and low solution efficiency, the wall thickness uniformity was predicted using a radial basis function (RBF) neural network, and parameter optimization was performed using the particle swarm optimization (PSO) algorithm. The research results show that the RBF neural network can accurately predict wall thickness uniformity, and using the PSO optimization algorithm, the best parameter combination can reduce the wall thickness uniformity after drawing in finite element simulation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app142311203
- OA Status
- gold
- Cited By
- 8
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404903681
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404903681Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app142311203Digital Object Identifier
- Title
-
Research on the Optimization of TP2 Copper Tube Drawing Process Parameters Based on Particle Swarm Algorithm and Radial Basis Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-01Full publication date if available
- Authors
-
Fengli Yue, Zhen-fang Sha, Hongyun Sun, Dayong Chen, Jinsong LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/app142311203Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/app142311203Direct OA link when available
- Concepts
-
Particle swarm optimization, Artificial neural network, Radial basis function, Basis (linear algebra), Computer science, Process (computing), Algorithm, Materials science, Mathematical optimization, Artificial intelligence, Mathematics, Operating system, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404903681 |
|---|---|
| doi | https://doi.org/10.3390/app142311203 |
| ids.doi | https://doi.org/10.3390/app142311203 |
| ids.openalex | https://openalex.org/W4404903681 |
| fwci | 5.76637174 |
| type | article |
| title | Research on the Optimization of TP2 Copper Tube Drawing Process Parameters Based on Particle Swarm Algorithm and Radial Basis Neural Network |
| biblio.issue | 23 |
| biblio.volume | 14 |
| biblio.last_page | 11203 |
| biblio.first_page | 11203 |
| topics[0].id | https://openalex.org/T13965 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.988099992275238 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Laser and Thermal Forming Techniques |
| topics[1].id | https://openalex.org/T10188 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9248999953269958 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Advanced machining processes and optimization |
| topics[2].id | https://openalex.org/T11201 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9039999842643738 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Metallurgy and Material Forming |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C85617194 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7009955644607544 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[0].display_name | Particle swarm optimization |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6399567127227783 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C98856871 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6060695648193359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1588488 |
| concepts[2].display_name | Radial basis function |
| concepts[3].id | https://openalex.org/C12426560 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48040321469306946 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[3].display_name | Basis (linear algebra) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4791930913925171 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46121156215667725 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3980410099029541 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C192562407 |
| concepts[7].level | 0 |
| concepts[7].score | 0.340593546628952 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[7].display_name | Materials science |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3348506689071655 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23814159631729126 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.22995051741600037 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[0].score | 0.7009955644607544 |
| keywords[0].display_name | Particle swarm optimization |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6399567127227783 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/radial-basis-function |
| keywords[2].score | 0.6060695648193359 |
| keywords[2].display_name | Radial basis function |
| keywords[3].id | https://openalex.org/keywords/basis |
| keywords[3].score | 0.48040321469306946 |
| keywords[3].display_name | Basis (linear algebra) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4791930913925171 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.46121156215667725 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.3980410099029541 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/materials-science |
| keywords[7].score | 0.340593546628952 |
| keywords[7].display_name | Materials science |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.3348506689071655 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.23814159631729126 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.22995051741600037 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/app142311203 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app142311203 |
| locations[1].id | pmh:oai:doaj.org/article:a5ecd5bfc4304a8bba4ff30810d482c2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 14, Iss 23, p 11203 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/a5ecd5bfc4304a8bba4ff30810d482c2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5084326187 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9345-7645 |
| authorships[0].author.display_name | Fengli Yue |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I116036724 |
| authorships[0].affiliations[0].raw_affiliation_string | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China |
| authorships[0].institutions[0].id | https://openalex.org/I116036724 |
| authorships[0].institutions[0].ror | https://ror.org/03m20nr07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I116036724 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenyang Ligong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fengli Yue |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China |
| authorships[1].author.id | https://openalex.org/A5060288915 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhen-fang Sha |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I116036724 |
| authorships[1].affiliations[0].raw_affiliation_string | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China |
| authorships[1].institutions[0].id | https://openalex.org/I116036724 |
| authorships[1].institutions[0].ror | https://ror.org/03m20nr07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I116036724 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenyang Ligong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhuo Sha |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China |
| authorships[2].author.id | https://openalex.org/A5023898574 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3837-4249 |
| authorships[2].author.display_name | Hongyun Sun |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I116036724 |
| authorships[2].affiliations[0].raw_affiliation_string | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China |
| authorships[2].institutions[0].id | https://openalex.org/I116036724 |
| authorships[2].institutions[0].ror | https://ror.org/03m20nr07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I116036724 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenyang Ligong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongyun Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China |
| authorships[3].author.id | https://openalex.org/A5021457331 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6226-3370 |
| authorships[3].author.display_name | Dayong Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[3].affiliations[0].raw_affiliation_string | Shi Changxu Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dayong Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shi Changxu Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
| authorships[4].author.id | https://openalex.org/A5119011526 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jinsong Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I116036724 |
| authorships[4].affiliations[0].raw_affiliation_string | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I19820366 |
| authorships[4].affiliations[1].raw_affiliation_string | Shi Changxu Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I116036724 |
| authorships[4].institutions[1].ror | https://ror.org/03m20nr07 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I116036724 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenyang Ligong University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jinsong Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Automotive and Transportation College, Shenyang Ligong University, Shenyang 110159, China, Shi Changxu Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/app142311203 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on the Optimization of TP2 Copper Tube Drawing Process Parameters Based on Particle Swarm Algorithm and Radial Basis Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13965 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.988099992275238 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Laser and Thermal Forming Techniques |
| related_works | https://openalex.org/W1794182708, https://openalex.org/W2133420660, https://openalex.org/W3019402777, https://openalex.org/W2387610815, https://openalex.org/W2031835531, https://openalex.org/W2388590088, https://openalex.org/W4386596916, https://openalex.org/W2393731464, https://openalex.org/W2374946871, https://openalex.org/W1572661297 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app142311203 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app142311203 |
| primary_location.id | doi:10.3390/app142311203 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app142311203 |
| publication_date | 2024-12-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2945152307, https://openalex.org/W4392570531, https://openalex.org/W4296907988, https://openalex.org/W4322154330, https://openalex.org/W4317809545, https://openalex.org/W4200016261, https://openalex.org/W4385977883, https://openalex.org/W2914334713, https://openalex.org/W2969183492, https://openalex.org/W4400859681, https://openalex.org/W4401395191, https://openalex.org/W4401413801, https://openalex.org/W4401047198, https://openalex.org/W4400915573, https://openalex.org/W4400745368, https://openalex.org/W4396997508, https://openalex.org/W4210880704, https://openalex.org/W3132317670, https://openalex.org/W4323318226, https://openalex.org/W2384922505, https://openalex.org/W2358003239, https://openalex.org/W4400080355, https://openalex.org/W6869588198, https://openalex.org/W4401175467, https://openalex.org/W4378228113, https://openalex.org/W4400934639, https://openalex.org/W4401066758, https://openalex.org/W4404591535, https://openalex.org/W4401068546, https://openalex.org/W4396690595, https://openalex.org/W4400194435, https://openalex.org/W4389939611 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 68, 137 |
| abstract_inverted_index.To | 29, 113 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.as | 8, 91 |
| abstract_inverted_index.in | 189 |
| abstract_inverted_index.of | 24, 33, 50, 60, 72, 88, 117, 121 |
| abstract_inverted_index.on | 37, 101 |
| abstract_inverted_index.to | 56, 84 |
| abstract_inverted_index.PSO | 174 |
| abstract_inverted_index.RBF | 162 |
| abstract_inverted_index.TP2 | 2 |
| abstract_inverted_index.The | 156 |
| abstract_inverted_index.and | 12, 78, 98, 109, 126, 144, 171 |
| abstract_inverted_index.can | 165, 181 |
| abstract_inverted_index.die | 93 |
| abstract_inverted_index.for | 45 |
| abstract_inverted_index.low | 127 |
| abstract_inverted_index.the | 22, 25, 31, 47, 58, 61, 65, 86, 115, 118, 130, 150, 161, 173, 177, 183 |
| abstract_inverted_index.was | 54, 76, 134, 147 |
| abstract_inverted_index.best | 178 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.such | 7, 90 |
| abstract_inverted_index.that | 160 |
| abstract_inverted_index.wall | 14, 38, 48, 107, 110, 131, 168, 184 |
| abstract_inverted_index.were | 82 |
| abstract_inverted_index.(PSO) | 154 |
| abstract_inverted_index.(RBF) | 141 |
| abstract_inverted_index.After | 0 |
| abstract_inverted_index.Using | 64 |
| abstract_inverted_index.after | 16, 187 |
| abstract_inverted_index.basis | 139 |
| abstract_inverted_index.data, | 67 |
| abstract_inverted_index.drawn | 73 |
| abstract_inverted_index.joint | 17 |
| abstract_inverted_index.large | 119 |
| abstract_inverted_index.model | 71, 124 |
| abstract_inverted_index.outer | 92 |
| abstract_inverted_index.study | 30 |
| abstract_inverted_index.swarm | 152 |
| abstract_inverted_index.taper | 94 |
| abstract_inverted_index.tubes | 4, 53, 75 |
| abstract_inverted_index.using | 136, 149, 172 |
| abstract_inverted_index.which | 19 |
| abstract_inverted_index.angle, | 95 |
| abstract_inverted_index.copper | 3, 27, 52, 74 |
| abstract_inverted_index.effect | 32 |
| abstract_inverted_index.finite | 69, 122, 190 |
| abstract_inverted_index.force, | 103 |
| abstract_inverted_index.marks, | 10 |
| abstract_inverted_index.meshes | 125 |
| abstract_inverted_index.neural | 142, 163 |
| abstract_inverted_index.number | 120 |
| abstract_inverted_index.radial | 138 |
| abstract_inverted_index.reduce | 182 |
| abstract_inverted_index.rolled | 51 |
| abstract_inverted_index.speed, | 97 |
| abstract_inverted_index.tubes. | 28 |
| abstract_inverted_index.uneven | 13 |
| abstract_inverted_index.verify | 57 |
| abstract_inverted_index.address | 114 |
| abstract_inverted_index.affects | 21 |
| abstract_inverted_index.analyze | 85 |
| abstract_inverted_index.average | 106 |
| abstract_inverted_index.cracks, | 11 |
| abstract_inverted_index.defects | 6 |
| abstract_inverted_index.drawing | 34, 96, 102, 188 |
| abstract_inverted_index.element | 70, 123, 191 |
| abstract_inverted_index.exhibit | 5 |
| abstract_inverted_index.maximum | 104 |
| abstract_inverted_index.network | 164 |
| abstract_inverted_index.predict | 167 |
| abstract_inverted_index.problem | 116 |
| abstract_inverted_index.process | 35 |
| abstract_inverted_index.quality | 23 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.studies | 81 |
| abstract_inverted_index.accuracy | 59 |
| abstract_inverted_index.detected | 66 |
| abstract_inverted_index.drawing, | 18 |
| abstract_inverted_index.finished | 26 |
| abstract_inverted_index.friction | 99 |
| abstract_inverted_index.function | 140 |
| abstract_inverted_index.network, | 143 |
| abstract_inverted_index.particle | 151 |
| abstract_inverted_index.platform | 44 |
| abstract_inverted_index.research | 157 |
| abstract_inverted_index.rolling, | 1 |
| abstract_inverted_index.sawtooth | 9 |
| abstract_inverted_index.severely | 20 |
| abstract_inverted_index.solution | 128 |
| abstract_inverted_index.conducted | 83 |
| abstract_inverted_index.detection | 43 |
| abstract_inverted_index.influence | 87 |
| abstract_inverted_index.measuring | 46 |
| abstract_inverted_index.numerical | 79 |
| abstract_inverted_index.parameter | 145, 179 |
| abstract_inverted_index.performed | 148 |
| abstract_inverted_index.predicted | 135 |
| abstract_inverted_index.thickness | 15, 39, 49, 111, 132, 169, 185 |
| abstract_inverted_index.accurately | 166 |
| abstract_inverted_index.algorithm, | 176 |
| abstract_inverted_index.algorithm. | 155 |
| abstract_inverted_index.equipment. | 63 |
| abstract_inverted_index.parameters | 36, 89 |
| abstract_inverted_index.simulation | 80 |
| abstract_inverted_index.thickness, | 108 |
| abstract_inverted_index.ultrasonic | 42 |
| abstract_inverted_index.uniformity | 133, 186 |
| abstract_inverted_index.coefficient | 100 |
| abstract_inverted_index.combination | 180 |
| abstract_inverted_index.constructed | 55 |
| abstract_inverted_index.efficiency, | 129 |
| abstract_inverted_index.simulation. | 192 |
| abstract_inverted_index.uniformity, | 40, 170 |
| abstract_inverted_index.uniformity. | 112 |
| abstract_inverted_index.established, | 77 |
| abstract_inverted_index.experimental | 62 |
| abstract_inverted_index.optimization | 146, 153, 175 |
| abstract_inverted_index.temperature, | 105 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5084326187 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I116036724 |
| citation_normalized_percentile.value | 0.94961324 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |