Research on Titanic Survival Prediction Based on Machine Learning Method Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.54254/2754-1169/2024.19451
On April 15, 1912, the British luxury passenger ship Titanic sank on its maiden voyage from Southampton to New York because of a collision with an iceberg, resulting in the death of 1502 out of 2224 passengers and crew. This article gains insight into the factors that influence the survival rate of passengers on the Titanic and establish a model of hard voting consisting of logistic regression, random forest and decision tree to predict what sort of people are more likely to survive in this catastrophe. The process involves dealing with the missing values, creating new variables by feature engineering and fitting the model to the dataset. The overall model performs well accuracy 87.64%. By applying to the navigation field, more data can be collected and more precise predictions can be made. The results can also help individuals to predict risk factors and try to decrease them as much as possible while robustness and stability of the model still need to be refined.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54254/2754-1169/2024.19451
- https://www.ewadirect.com/proceedings/aemps/article/view/19451/pdf
- OA Status
- hybrid
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406104357
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406104357Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54254/2754-1169/2024.19451Digital Object Identifier
- Title
-
Research on Titanic Survival Prediction Based on Machine Learning MethodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-06Full publication date if available
- Authors
-
Yongzhong Liao, Shimiao Zhang, Zixin ZhangList of authors in order
- Landing page
-
https://doi.org/10.54254/2754-1169/2024.19451Publisher landing page
- PDF URL
-
https://www.ewadirect.com/proceedings/aemps/article/view/19451/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ewadirect.com/proceedings/aemps/article/view/19451/pdfDirect OA link when available
- Concepts
-
sort, Crew, Decision tree, Robustness (evolution), Random forest, Computer science, Logistic regression, Feature (linguistics), Artificial intelligence, Machine learning, Operations research, Engineering, Aeronautics, Information retrieval, Chemistry, Gene, Biochemistry, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406104357 |
|---|---|
| doi | https://doi.org/10.54254/2754-1169/2024.19451 |
| ids.doi | https://doi.org/10.54254/2754-1169/2024.19451 |
| ids.openalex | https://openalex.org/W4406104357 |
| fwci | 0.0 |
| type | article |
| title | Research on Titanic Survival Prediction Based on Machine Learning Method |
| biblio.issue | 1 |
| biblio.volume | 152 |
| biblio.last_page | 162 |
| biblio.first_page | 152 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9506999850273132 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9483000040054321 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C88548561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7242267727851868 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q347599 |
| concepts[0].display_name | sort |
| concepts[1].id | https://openalex.org/C2780179797 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6661040782928467 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q345844 |
| concepts[1].display_name | Crew |
| concepts[2].id | https://openalex.org/C84525736 |
| concepts[2].level | 2 |
| concepts[2].score | 0.638744592666626 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[2].display_name | Decision tree |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5865899324417114 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5645378828048706 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.559586226940155 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C151956035 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5354136824607849 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[6].display_name | Logistic regression |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4644612669944763 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45800209045410156 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.43553197383880615 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C42475967 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41426026821136475 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[10].display_name | Operations research |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.27917802333831787 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C178802073 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18293443322181702 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8421 |
| concepts[12].display_name | Aeronautics |
| concepts[13].id | https://openalex.org/C23123220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08776244521141052 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[13].display_name | Information retrieval |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C55493867 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[16].display_name | Biochemistry |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/sort |
| keywords[0].score | 0.7242267727851868 |
| keywords[0].display_name | sort |
| keywords[1].id | https://openalex.org/keywords/crew |
| keywords[1].score | 0.6661040782928467 |
| keywords[1].display_name | Crew |
| keywords[2].id | https://openalex.org/keywords/decision-tree |
| keywords[2].score | 0.638744592666626 |
| keywords[2].display_name | Decision tree |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.5865899324417114 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.5645378828048706 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.559586226940155 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/logistic-regression |
| keywords[6].score | 0.5354136824607849 |
| keywords[6].display_name | Logistic regression |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.4644612669944763 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.45800209045410156 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.43553197383880615 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/operations-research |
| keywords[10].score | 0.41426026821136475 |
| keywords[10].display_name | Operations research |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.27917802333831787 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/aeronautics |
| keywords[12].score | 0.18293443322181702 |
| keywords[12].display_name | Aeronautics |
| keywords[13].id | https://openalex.org/keywords/information-retrieval |
| keywords[13].score | 0.08776244521141052 |
| keywords[13].display_name | Information retrieval |
| language | en |
| locations[0].id | doi:10.54254/2754-1169/2024.19451 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387278942 |
| locations[0].source.issn | 2754-1169, 2754-1177 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2754-1169 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Advances in Economics Management and Political Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ewadirect.com/proceedings/aemps/article/view/19451/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advances in Economics, Management and Political Sciences |
| locations[0].landing_page_url | https://doi.org/10.54254/2754-1169/2024.19451 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5111627290 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yongzhong Liao |
| authorships[0].affiliations[0].raw_affiliation_string | Guanghua Cambridge International School, Shanghai, China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yicui Liao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guanghua Cambridge International School, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5048499171 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shimiao Zhang |
| authorships[1].affiliations[0].raw_affiliation_string | Cardiff Sixth Form College, Cardiff, United Kingdom |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shimiao Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cardiff Sixth Form College, Cardiff, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5077430796 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5871-2364 |
| authorships[2].author.display_name | Zixin Zhang |
| authorships[2].affiliations[0].raw_affiliation_string | Ulink College of Shanghai, Shanghai, China |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zixin Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ulink College of Shanghai, Shanghai, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ewadirect.com/proceedings/aemps/article/view/19451/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Research on Titanic Survival Prediction Based on Machine Learning Method |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9506999850273132 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W1230495041, https://openalex.org/W2981238890, https://openalex.org/W2130466874, https://openalex.org/W3201287350, https://openalex.org/W3204452099, https://openalex.org/W258179848, https://openalex.org/W4366990902, https://openalex.org/W4388550696, https://openalex.org/W4321636153, https://openalex.org/W4313289487 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54254/2754-1169/2024.19451 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387278942 |
| best_oa_location.source.issn | 2754-1169, 2754-1177 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2754-1169 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Advances in Economics Management and Political Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ewadirect.com/proceedings/aemps/article/view/19451/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Advances in Economics, Management and Political Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.54254/2754-1169/2024.19451 |
| primary_location.id | doi:10.54254/2754-1169/2024.19451 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387278942 |
| primary_location.source.issn | 2754-1169, 2754-1177 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2754-1169 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Advances in Economics Management and Political Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ewadirect.com/proceedings/aemps/article/view/19451/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advances in Economics, Management and Political Sciences |
| primary_location.landing_page_url | https://doi.org/10.54254/2754-1169/2024.19451 |
| publication_date | 2025-01-06 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2979895330, https://openalex.org/W2137932118, https://openalex.org/W2371638596, https://openalex.org/W2944954104, https://openalex.org/W4376139649, https://openalex.org/W4392959589, https://openalex.org/W861925310 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 22, 58 |
| abstract_inverted_index.By | 114 |
| abstract_inverted_index.On | 0 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.as | 147, 149 |
| abstract_inverted_index.be | 123, 130, 161 |
| abstract_inverted_index.by | 97 |
| abstract_inverted_index.in | 28, 83 |
| abstract_inverted_index.of | 21, 31, 34, 51, 60, 64, 76, 155 |
| abstract_inverted_index.on | 11, 53 |
| abstract_inverted_index.to | 17, 72, 81, 104, 116, 138, 144, 160 |
| abstract_inverted_index.15, | 2 |
| abstract_inverted_index.New | 18 |
| abstract_inverted_index.The | 86, 107, 132 |
| abstract_inverted_index.and | 37, 56, 69, 100, 125, 142, 153 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.can | 122, 129, 134 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.new | 95 |
| abstract_inverted_index.out | 33 |
| abstract_inverted_index.the | 4, 29, 44, 48, 54, 91, 102, 105, 117, 156 |
| abstract_inverted_index.try | 143 |
| abstract_inverted_index.1502 | 32 |
| abstract_inverted_index.2224 | 35 |
| abstract_inverted_index.This | 39 |
| abstract_inverted_index.York | 19 |
| abstract_inverted_index.also | 135 |
| abstract_inverted_index.data | 121 |
| abstract_inverted_index.from | 15 |
| abstract_inverted_index.hard | 61 |
| abstract_inverted_index.help | 136 |
| abstract_inverted_index.into | 43 |
| abstract_inverted_index.more | 79, 120, 126 |
| abstract_inverted_index.much | 148 |
| abstract_inverted_index.need | 159 |
| abstract_inverted_index.rate | 50 |
| abstract_inverted_index.risk | 140 |
| abstract_inverted_index.sank | 10 |
| abstract_inverted_index.ship | 8 |
| abstract_inverted_index.sort | 75 |
| abstract_inverted_index.that | 46 |
| abstract_inverted_index.them | 146 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.tree | 71 |
| abstract_inverted_index.well | 111 |
| abstract_inverted_index.what | 74 |
| abstract_inverted_index.with | 24, 90 |
| abstract_inverted_index.1912, | 3 |
| abstract_inverted_index.April | 1 |
| abstract_inverted_index.crew. | 38 |
| abstract_inverted_index.death | 30 |
| abstract_inverted_index.gains | 41 |
| abstract_inverted_index.made. | 131 |
| abstract_inverted_index.model | 59, 103, 109, 157 |
| abstract_inverted_index.still | 158 |
| abstract_inverted_index.while | 151 |
| abstract_inverted_index.field, | 119 |
| abstract_inverted_index.forest | 68 |
| abstract_inverted_index.likely | 80 |
| abstract_inverted_index.luxury | 6 |
| abstract_inverted_index.maiden | 13 |
| abstract_inverted_index.people | 77 |
| abstract_inverted_index.random | 67 |
| abstract_inverted_index.voting | 62 |
| abstract_inverted_index.voyage | 14 |
| abstract_inverted_index.87.64%. | 113 |
| abstract_inverted_index.British | 5 |
| abstract_inverted_index.Titanic | 9, 55 |
| abstract_inverted_index.article | 40 |
| abstract_inverted_index.because | 20 |
| abstract_inverted_index.dealing | 89 |
| abstract_inverted_index.factors | 45, 141 |
| abstract_inverted_index.feature | 98 |
| abstract_inverted_index.fitting | 101 |
| abstract_inverted_index.insight | 42 |
| abstract_inverted_index.missing | 92 |
| abstract_inverted_index.overall | 108 |
| abstract_inverted_index.precise | 127 |
| abstract_inverted_index.predict | 73, 139 |
| abstract_inverted_index.process | 87 |
| abstract_inverted_index.results | 133 |
| abstract_inverted_index.survive | 82 |
| abstract_inverted_index.values, | 93 |
| abstract_inverted_index.accuracy | 112 |
| abstract_inverted_index.applying | 115 |
| abstract_inverted_index.creating | 94 |
| abstract_inverted_index.dataset. | 106 |
| abstract_inverted_index.decision | 70 |
| abstract_inverted_index.decrease | 145 |
| abstract_inverted_index.iceberg, | 26 |
| abstract_inverted_index.involves | 88 |
| abstract_inverted_index.logistic | 65 |
| abstract_inverted_index.performs | 110 |
| abstract_inverted_index.possible | 150 |
| abstract_inverted_index.refined. | 162 |
| abstract_inverted_index.survival | 49 |
| abstract_inverted_index.collected | 124 |
| abstract_inverted_index.collision | 23 |
| abstract_inverted_index.establish | 57 |
| abstract_inverted_index.influence | 47 |
| abstract_inverted_index.passenger | 7 |
| abstract_inverted_index.resulting | 27 |
| abstract_inverted_index.stability | 154 |
| abstract_inverted_index.variables | 96 |
| abstract_inverted_index.consisting | 63 |
| abstract_inverted_index.navigation | 118 |
| abstract_inverted_index.passengers | 36, 52 |
| abstract_inverted_index.robustness | 152 |
| abstract_inverted_index.Southampton | 16 |
| abstract_inverted_index.engineering | 99 |
| abstract_inverted_index.individuals | 137 |
| abstract_inverted_index.predictions | 128 |
| abstract_inverted_index.regression, | 66 |
| abstract_inverted_index.catastrophe. | 85 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.00212394 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |