ResGAT: Residual Graph Attention Networks for molecular property prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s12293-024-00423-5
Molecular property prediction is an important step in the drug discovery pipeline. Numerous computational methods have been developed to predict a wide range of molecular properties. While recent approaches have shown promising results, no single architecture can comprehensively address all tasks, making this area persistently challenging and requiring substantial time and effort. Beyond traditional machine learning and deep learning architectures for regular data, several deep learning architectures have been designed for graph-structured data to overcome the limitations of conventional methods. Utilizing graph-structured data in quantitative structure–activity relationship (QSAR) modeling allows models to effectively extract unique features, especially where connectivity information is crucial. In our study, we developed residual graph attention networks (ResGAT), a deep learning architecture for molecular graph-structured data. This architecture is a combination of graph attention networks and shortcut connections to address both regression and classification problems. It is also customizable to adapt to various dataset sizes, enhancing the learning process based on molecular patterns. When tested multiple times with both random and scaffold sampling strategies on nine benchmark molecular datasets, QSAR models developed using ResGAT demonstrated stability and competitive performance compared to state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s12293-024-00423-5
- https://link.springer.com/content/pdf/10.1007/s12293-024-00423-5.pdf
- OA Status
- hybrid
- Cited By
- 5
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402193229
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402193229Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s12293-024-00423-5Digital Object Identifier
- Title
-
ResGAT: Residual Graph Attention Networks for molecular property predictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-01Full publication date if available
- Authors
-
Thanh‐Hoang Nguyen‐Vo, T. T. Trang, Binh P. NguyenList of authors in order
- Landing page
-
https://doi.org/10.1007/s12293-024-00423-5Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s12293-024-00423-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s12293-024-00423-5.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Graph, Machine learning, Deep learning, Quantitative structure–activity relationship, Benchmark (surveying), Residual, Pipeline (software), Property (philosophy), Data mining, Theoretical computer science, Algorithm, Geodesy, Programming language, Philosophy, Epistemology, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402193229 |
|---|---|
| doi | https://doi.org/10.1007/s12293-024-00423-5 |
| ids.doi | https://doi.org/10.1007/s12293-024-00423-5 |
| ids.openalex | https://openalex.org/W4402193229 |
| fwci | 3.95067787 |
| type | article |
| title | ResGAT: Residual Graph Attention Networks for molecular property prediction |
| biblio.issue | 3 |
| biblio.volume | 16 |
| biblio.last_page | 503 |
| biblio.first_page | 491 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10044 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9581999778747559 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Protein Structure and Dynamics |
| funders[0].id | https://openalex.org/F4320320802 |
| funders[0].ror | https://ror.org/0040r6f76 |
| funders[0].display_name | Victoria University of Wellington |
| is_xpac | False |
| apc_list.value | 2690 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3490 |
| apc_paid.value | 2690 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3490 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7771786451339722 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6251822710037231 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6026757955551147 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5780327916145325 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5732302665710449 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C164126121 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5319129824638367 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q766383 |
| concepts[5].display_name | Quantitative structure–activity relationship |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5083228945732117 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C155512373 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5022482872009277 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[7].display_name | Residual |
| concepts[8].id | https://openalex.org/C43521106 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4683883488178253 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[8].display_name | Pipeline (software) |
| concepts[9].id | https://openalex.org/C189950617 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42628031969070435 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[9].display_name | Property (philosophy) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39986130595207214 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.28598421812057495 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11305791139602661 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C13280743 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[13].display_name | Geodesy |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C111472728 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[16].display_name | Epistemology |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7771786451339722 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6251822710037231 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.6026757955551147 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5780327916145325 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5732302665710449 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/quantitative-structure–activity-relationship |
| keywords[5].score | 0.5319129824638367 |
| keywords[5].display_name | Quantitative structure–activity relationship |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.5083228945732117 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/residual |
| keywords[7].score | 0.5022482872009277 |
| keywords[7].display_name | Residual |
| keywords[8].id | https://openalex.org/keywords/pipeline |
| keywords[8].score | 0.4683883488178253 |
| keywords[8].display_name | Pipeline (software) |
| keywords[9].id | https://openalex.org/keywords/property |
| keywords[9].score | 0.42628031969070435 |
| keywords[9].display_name | Property (philosophy) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.39986130595207214 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.28598421812057495 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.11305791139602661 |
| keywords[12].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1007/s12293-024-00423-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S125629831 |
| locations[0].source.issn | 1865-9284, 1865-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1865-9284 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Memetic Computing |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s12293-024-00423-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Memetic Computing |
| locations[0].landing_page_url | https://doi.org/10.1007/s12293-024-00423-5 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078787020 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0006-5245 |
| authorships[0].author.display_name | Thanh‐Hoang Nguyen‐Vo |
| authorships[0].countries | VN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210096063 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City, 70000, Vietnam |
| authorships[0].institutions[0].id | https://openalex.org/I4210096063 |
| authorships[0].institutions[0].ror | https://ror.org/00tean533 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210096063 |
| authorships[0].institutions[0].country_code | VN |
| authorships[0].institutions[0].display_name | Ho Chi Minh City Open University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thanh-Hoang Nguyen-Vo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Information Technology, Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City, 70000, Vietnam |
| authorships[1].author.id | https://openalex.org/A5048585011 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1614-4661 |
| authorships[1].author.display_name | T. T. Trang |
| authorships[1].countries | VN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210096063 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City, 70000, Vietnam |
| authorships[1].institutions[0].id | https://openalex.org/I4210096063 |
| authorships[1].institutions[0].ror | https://ror.org/00tean533 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210096063 |
| authorships[1].institutions[0].country_code | VN |
| authorships[1].institutions[0].display_name | Ho Chi Minh City Open University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Trang T. T. Do |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Information Technology, Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City, 70000, Vietnam |
| authorships[2].author.id | https://openalex.org/A5091142923 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6203-6664 |
| authorships[2].author.display_name | Binh P. Nguyen |
| authorships[2].countries | NZ |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I41156924 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand |
| authorships[2].institutions[0].id | https://openalex.org/I41156924 |
| authorships[2].institutions[0].ror | https://ror.org/0040r6f76 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I41156924 |
| authorships[2].institutions[0].country_code | NZ |
| authorships[2].institutions[0].display_name | Victoria University of Wellington |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Binh P. Nguyen |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s12293-024-00423-5.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ResGAT: Residual Graph Attention Networks for molecular property prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2382340815, https://openalex.org/W1972650408, https://openalex.org/W2551736466, https://openalex.org/W1997566113, https://openalex.org/W3189652131, https://openalex.org/W2908740012, https://openalex.org/W1967793880, https://openalex.org/W2792066564, https://openalex.org/W1186905254, https://openalex.org/W2898703579 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s12293-024-00423-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S125629831 |
| best_oa_location.source.issn | 1865-9284, 1865-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1865-9284 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Memetic Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12293-024-00423-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Memetic Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s12293-024-00423-5 |
| primary_location.id | doi:10.1007/s12293-024-00423-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S125629831 |
| primary_location.source.issn | 1865-9284, 1865-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1865-9284 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Memetic Computing |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12293-024-00423-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Memetic Computing |
| primary_location.landing_page_url | https://doi.org/10.1007/s12293-024-00423-5 |
| publication_date | 2024-09-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1989554917, https://openalex.org/W3038823641, https://openalex.org/W3023042104, https://openalex.org/W2116341502, https://openalex.org/W2139271038, https://openalex.org/W2087347207, https://openalex.org/W2134499763, https://openalex.org/W3095617312, https://openalex.org/W4311584330, https://openalex.org/W2968734407, https://openalex.org/W3154492312, https://openalex.org/W3179111421, https://openalex.org/W4280602833, https://openalex.org/W2964015378, https://openalex.org/W3110901318, https://openalex.org/W2964113829, https://openalex.org/W2966357564, https://openalex.org/W3132845217, https://openalex.org/W2022476850, https://openalex.org/W4297733535, https://openalex.org/W4297734170, https://openalex.org/W2594183968, https://openalex.org/W3205647825, https://openalex.org/W4212847239, https://openalex.org/W4392470807, https://openalex.org/W2909063104 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 21, 113, 124 |
| abstract_inverted_index.In | 103 |
| abstract_inverted_index.It | 140 |
| abstract_inverted_index.an | 5 |
| abstract_inverted_index.in | 8, 84 |
| abstract_inverted_index.is | 4, 101, 123, 141 |
| abstract_inverted_index.no | 34 |
| abstract_inverted_index.of | 24, 78, 126 |
| abstract_inverted_index.on | 155, 169 |
| abstract_inverted_index.to | 19, 74, 92, 133, 144, 146, 185 |
| abstract_inverted_index.we | 106 |
| abstract_inverted_index.all | 40 |
| abstract_inverted_index.and | 47, 51, 57, 130, 137, 165, 181 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.for | 61, 71, 117 |
| abstract_inverted_index.our | 104 |
| abstract_inverted_index.the | 9, 76, 151 |
| abstract_inverted_index.QSAR | 174 |
| abstract_inverted_index.This | 121 |
| abstract_inverted_index.When | 158 |
| abstract_inverted_index.also | 142 |
| abstract_inverted_index.area | 44 |
| abstract_inverted_index.been | 17, 69 |
| abstract_inverted_index.both | 135, 163 |
| abstract_inverted_index.data | 73, 83 |
| abstract_inverted_index.deep | 58, 65, 114 |
| abstract_inverted_index.drug | 10 |
| abstract_inverted_index.have | 16, 30, 68 |
| abstract_inverted_index.nine | 170 |
| abstract_inverted_index.step | 7 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.time | 50 |
| abstract_inverted_index.wide | 22 |
| abstract_inverted_index.with | 162 |
| abstract_inverted_index.While | 27 |
| abstract_inverted_index.adapt | 145 |
| abstract_inverted_index.based | 154 |
| abstract_inverted_index.data, | 63 |
| abstract_inverted_index.data. | 120 |
| abstract_inverted_index.graph | 109, 127 |
| abstract_inverted_index.range | 23 |
| abstract_inverted_index.shown | 31 |
| abstract_inverted_index.times | 161 |
| abstract_inverted_index.using | 177 |
| abstract_inverted_index.where | 98 |
| abstract_inverted_index.(QSAR) | 88 |
| abstract_inverted_index.Beyond | 53 |
| abstract_inverted_index.ResGAT | 178 |
| abstract_inverted_index.allows | 90 |
| abstract_inverted_index.making | 42 |
| abstract_inverted_index.models | 91, 175 |
| abstract_inverted_index.random | 164 |
| abstract_inverted_index.recent | 28 |
| abstract_inverted_index.single | 35 |
| abstract_inverted_index.sizes, | 149 |
| abstract_inverted_index.study, | 105 |
| abstract_inverted_index.tasks, | 41 |
| abstract_inverted_index.tested | 159 |
| abstract_inverted_index.unique | 95 |
| abstract_inverted_index.address | 39, 134 |
| abstract_inverted_index.dataset | 148 |
| abstract_inverted_index.effort. | 52 |
| abstract_inverted_index.extract | 94 |
| abstract_inverted_index.machine | 55 |
| abstract_inverted_index.methods | 15 |
| abstract_inverted_index.predict | 20 |
| abstract_inverted_index.process | 153 |
| abstract_inverted_index.regular | 62 |
| abstract_inverted_index.several | 64 |
| abstract_inverted_index.various | 147 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Numerous | 13 |
| abstract_inverted_index.compared | 184 |
| abstract_inverted_index.crucial. | 102 |
| abstract_inverted_index.designed | 70 |
| abstract_inverted_index.learning | 56, 59, 66, 115, 152 |
| abstract_inverted_index.methods. | 80, 187 |
| abstract_inverted_index.modeling | 89 |
| abstract_inverted_index.multiple | 160 |
| abstract_inverted_index.networks | 111, 129 |
| abstract_inverted_index.overcome | 75 |
| abstract_inverted_index.property | 2 |
| abstract_inverted_index.residual | 108 |
| abstract_inverted_index.results, | 33 |
| abstract_inverted_index.sampling | 167 |
| abstract_inverted_index.scaffold | 166 |
| abstract_inverted_index.shortcut | 131 |
| abstract_inverted_index.(ResGAT), | 112 |
| abstract_inverted_index.Molecular | 1 |
| abstract_inverted_index.Utilizing | 81 |
| abstract_inverted_index.attention | 110, 128 |
| abstract_inverted_index.benchmark | 171 |
| abstract_inverted_index.datasets, | 173 |
| abstract_inverted_index.developed | 18, 107, 176 |
| abstract_inverted_index.discovery | 11 |
| abstract_inverted_index.enhancing | 150 |
| abstract_inverted_index.features, | 96 |
| abstract_inverted_index.important | 6 |
| abstract_inverted_index.molecular | 25, 118, 156, 172 |
| abstract_inverted_index.patterns. | 157 |
| abstract_inverted_index.pipeline. | 12 |
| abstract_inverted_index.problems. | 139 |
| abstract_inverted_index.promising | 32 |
| abstract_inverted_index.requiring | 48 |
| abstract_inverted_index.stability | 180 |
| abstract_inverted_index.approaches | 29 |
| abstract_inverted_index.especially | 97 |
| abstract_inverted_index.prediction | 3 |
| abstract_inverted_index.regression | 136 |
| abstract_inverted_index.strategies | 168 |
| abstract_inverted_index.challenging | 46 |
| abstract_inverted_index.combination | 125 |
| abstract_inverted_index.competitive | 182 |
| abstract_inverted_index.connections | 132 |
| abstract_inverted_index.effectively | 93 |
| abstract_inverted_index.information | 100 |
| abstract_inverted_index.limitations | 77 |
| abstract_inverted_index.performance | 183 |
| abstract_inverted_index.properties. | 26 |
| abstract_inverted_index.substantial | 49 |
| abstract_inverted_index.traditional | 54 |
| abstract_inverted_index.architecture | 36, 116, 122 |
| abstract_inverted_index.connectivity | 99 |
| abstract_inverted_index.conventional | 79 |
| abstract_inverted_index.customizable | 143 |
| abstract_inverted_index.demonstrated | 179 |
| abstract_inverted_index.persistently | 45 |
| abstract_inverted_index.quantitative | 85 |
| abstract_inverted_index.relationship | 87 |
| abstract_inverted_index.architectures | 60, 67 |
| abstract_inverted_index.computational | 14 |
| abstract_inverted_index.classification | 138 |
| abstract_inverted_index.comprehensively | 38 |
| abstract_inverted_index.graph-structured | 72, 82, 119 |
| abstract_inverted_index.state-of-the-art | 186 |
| abstract_inverted_index.structure–activity | 86 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5091142923 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I41156924 |
| citation_normalized_percentile.value | 0.90290422 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |