Residual connections provably mitigate oversmoothing in graph neural networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.00762
Graph neural networks (GNNs) have achieved remarkable empirical success in processing and representing graph-structured data across various domains. However, a significant challenge known as "oversmoothing" persists, where vertex features become nearly indistinguishable in deep GNNs, severely restricting their expressive power and practical utility. In this work, we analyze the asymptotic oversmoothing rates of deep GNNs with and without residual connections by deriving explicit convergence rates for a normalized vertex similarity measure. Our analytical framework is grounded in the multiplicative ergodic theorem. Furthermore, we demonstrate that adding residual connections effectively mitigates or prevents oversmoothing across several broad families of parameter distributions. The theoretical findings are strongly supported by numerical experiments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.00762
- https://arxiv.org/pdf/2501.00762
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406032773
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406032773Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.00762Digital Object Identifier
- Title
-
Residual connections provably mitigate oversmoothing in graph neural networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Ziang Chen, Zhiping Lin, Shi Chen, Yury Polyanskiy, Philippe RigolletList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.00762Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.00762Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.00762Direct OA link when available
- Concepts
-
Ergodic theory, Multiplicative function, Graph, Mathematics, Computer science, Discrete mathematics, Pure mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406032773 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.00762 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.00762 |
| ids.openalex | https://openalex.org/W4406032773 |
| fwci | |
| type | preprint |
| title | Residual connections provably mitigate oversmoothing in graph neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8123999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.8084999918937683 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T11520 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.8033999800682068 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Advanced Thermodynamics and Statistical Mechanics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C122044880 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8101941347122192 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5498822 |
| concepts[0].display_name | Ergodic theory |
| concepts[1].id | https://openalex.org/C42747912 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7065719962120056 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1048447 |
| concepts[1].display_name | Multiplicative function |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5297585129737854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3687708079814911 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3684704899787903 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C118615104 |
| concepts[5].level | 1 |
| concepts[5].score | 0.22428733110427856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[5].display_name | Discrete mathematics |
| concepts[6].id | https://openalex.org/C202444582 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09126311540603638 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[6].display_name | Pure mathematics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/ergodic-theory |
| keywords[0].score | 0.8101941347122192 |
| keywords[0].display_name | Ergodic theory |
| keywords[1].id | https://openalex.org/keywords/multiplicative-function |
| keywords[1].score | 0.7065719962120056 |
| keywords[1].display_name | Multiplicative function |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5297585129737854 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.3687708079814911 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3684704899787903 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[5].score | 0.22428733110427856 |
| keywords[5].display_name | Discrete mathematics |
| keywords[6].id | https://openalex.org/keywords/pure-mathematics |
| keywords[6].score | 0.09126311540603638 |
| keywords[6].display_name | Pure mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.00762 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.00762 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.00762 |
| locations[1].id | doi:10.48550/arxiv.2501.00762 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.00762 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101457896 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8298-5223 |
| authorships[0].author.display_name | Ziang Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Ziang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049506273 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1587-1226 |
| authorships[1].author.display_name | Zhiping Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Zhengjiang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100709711 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3524-3577 |
| authorships[2].author.display_name | Shi Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Shi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031031216 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yury Polyanskiy |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Polyanskiy, Yury |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5001421646 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1554-8912 |
| authorships[4].author.display_name | Philippe Rigollet |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rigollet, Philippe |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.00762 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-04T00:00:00 |
| display_name | Residual connections provably mitigate oversmoothing in graph neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8123999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W2390585021, https://openalex.org/W412641959, https://openalex.org/W50969306, https://openalex.org/W4247405823, https://openalex.org/W1479682422, https://openalex.org/W2966636294, https://openalex.org/W4288265580 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.00762 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.00762 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.00762 |
| primary_location.id | pmh:oai:arXiv.org:2501.00762 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.00762 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.00762 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 66 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.as | 23 |
| abstract_inverted_index.by | 60, 106 |
| abstract_inverted_index.in | 9, 32, 76 |
| abstract_inverted_index.is | 74 |
| abstract_inverted_index.of | 52, 97 |
| abstract_inverted_index.or | 90 |
| abstract_inverted_index.we | 46, 82 |
| abstract_inverted_index.Our | 71 |
| abstract_inverted_index.The | 100 |
| abstract_inverted_index.and | 11, 40, 56 |
| abstract_inverted_index.are | 103 |
| abstract_inverted_index.for | 65 |
| abstract_inverted_index.the | 48, 77 |
| abstract_inverted_index.GNNs | 54 |
| abstract_inverted_index.data | 14 |
| abstract_inverted_index.deep | 33, 53 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.that | 84 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.with | 55 |
| abstract_inverted_index.GNNs, | 34 |
| abstract_inverted_index.Graph | 0 |
| abstract_inverted_index.broad | 95 |
| abstract_inverted_index.known | 22 |
| abstract_inverted_index.power | 39 |
| abstract_inverted_index.rates | 51, 64 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.where | 26 |
| abstract_inverted_index.work, | 45 |
| abstract_inverted_index.(GNNs) | 3 |
| abstract_inverted_index.across | 15, 93 |
| abstract_inverted_index.adding | 85 |
| abstract_inverted_index.become | 29 |
| abstract_inverted_index.nearly | 30 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.vertex | 27, 68 |
| abstract_inverted_index.analyze | 47 |
| abstract_inverted_index.ergodic | 79 |
| abstract_inverted_index.several | 94 |
| abstract_inverted_index.success | 8 |
| abstract_inverted_index.various | 16 |
| abstract_inverted_index.without | 57 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.achieved | 5 |
| abstract_inverted_index.deriving | 61 |
| abstract_inverted_index.domains. | 17 |
| abstract_inverted_index.explicit | 62 |
| abstract_inverted_index.families | 96 |
| abstract_inverted_index.features | 28 |
| abstract_inverted_index.findings | 102 |
| abstract_inverted_index.grounded | 75 |
| abstract_inverted_index.measure. | 70 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.prevents | 91 |
| abstract_inverted_index.residual | 58, 86 |
| abstract_inverted_index.severely | 35 |
| abstract_inverted_index.strongly | 104 |
| abstract_inverted_index.theorem. | 80 |
| abstract_inverted_index.utility. | 42 |
| abstract_inverted_index.challenge | 21 |
| abstract_inverted_index.empirical | 7 |
| abstract_inverted_index.framework | 73 |
| abstract_inverted_index.mitigates | 89 |
| abstract_inverted_index.numerical | 107 |
| abstract_inverted_index.parameter | 98 |
| abstract_inverted_index.persists, | 25 |
| abstract_inverted_index.practical | 41 |
| abstract_inverted_index.supported | 105 |
| abstract_inverted_index.analytical | 72 |
| abstract_inverted_index.asymptotic | 49 |
| abstract_inverted_index.expressive | 38 |
| abstract_inverted_index.normalized | 67 |
| abstract_inverted_index.processing | 10 |
| abstract_inverted_index.remarkable | 6 |
| abstract_inverted_index.similarity | 69 |
| abstract_inverted_index.connections | 59, 87 |
| abstract_inverted_index.convergence | 63 |
| abstract_inverted_index.demonstrate | 83 |
| abstract_inverted_index.effectively | 88 |
| abstract_inverted_index.restricting | 36 |
| abstract_inverted_index.significant | 20 |
| abstract_inverted_index.theoretical | 101 |
| abstract_inverted_index.Furthermore, | 81 |
| abstract_inverted_index.experiments. | 108 |
| abstract_inverted_index.representing | 12 |
| abstract_inverted_index.oversmoothing | 50, 92 |
| abstract_inverted_index.distributions. | 99 |
| abstract_inverted_index.multiplicative | 78 |
| abstract_inverted_index."oversmoothing" | 24 |
| abstract_inverted_index.graph-structured | 13 |
| abstract_inverted_index.indistinguishable | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |