Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help? Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1904.03786
The design of neural network architectures is frequently either based on human expertise using trial/error and empirical feedback or tackled via large scale reinforcement learning strategies performed over distinct discrete architecture choices. In the latter case, the optimization is often non-differentiable and also not very amenable to derivative-free optimization methods. Most methods in use today require sizable computational resources. And if we want networks that additionally satisfy resource constraints, the above challenges are exacerbated because the search must now balance accuracy with certain budget constraints on resources. We formulate this problem as the optimization of a set function -- we find that the empirical behavior of this set function often (but not always) satisfies marginal gain and monotonicity principles -- properties central to the idea of submodularity. Based on this observation, we adapt algorithms within discrete optimization to obtain heuristic schemes for neural network architecture search, where we have resource constraints on the architecture. This simple scheme when applied on CIFAR-100 and ImageNet, identifies resource-constrained architectures with quantifiably better performance than current state-of-the-art models designed for mobile devices. Specifically, we find high-performing architectures with fewer parameters and computations by a search method that is much faster.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1904.03786
- https://arxiv.org/pdf/1904.03786
- OA Status
- green
- Cited By
- 4
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2971491060
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2971491060Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1904.03786Digital Object Identifier
- Title
-
Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-04-08Full publication date if available
- Authors
-
Yunyang Xiong, Ronak Mehta, Vikas SinghList of authors in order
- Landing page
-
https://arxiv.org/abs/1904.03786Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1904.03786Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1904.03786Direct OA link when available
- Concepts
-
Computer science, Mathematical optimization, Heuristic, Set (abstract data type), Differentiable function, Architecture, Resource allocation, Computation, Artificial neural network, Network architecture, Resource (disambiguation), Distributed computing, Artificial intelligence, Algorithm, Mathematics, Art, Computer network, Computer security, Visual arts, Mathematical analysis, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2971491060 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1904.03786 |
| ids.doi | https://doi.org/10.48550/arxiv.1904.03786 |
| ids.mag | 2971491060 |
| ids.openalex | https://openalex.org/W2971491060 |
| fwci | |
| type | preprint |
| title | Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7809540033340454 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C126255220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6077147722244263 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[1].display_name | Mathematical optimization |
| concepts[2].id | https://openalex.org/C173801870 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5480473637580872 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[2].display_name | Heuristic |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5237179398536682 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C202615002 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5046175718307495 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q783507 |
| concepts[4].display_name | Differentiable function |
| concepts[5].id | https://openalex.org/C123657996 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49887967109680176 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[5].display_name | Architecture |
| concepts[6].id | https://openalex.org/C29202148 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4771565794944763 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q287260 |
| concepts[6].display_name | Resource allocation |
| concepts[7].id | https://openalex.org/C45374587 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4608914256095886 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[7].display_name | Computation |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4442099332809448 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C193415008 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43535709381103516 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q639681 |
| concepts[9].display_name | Network architecture |
| concepts[10].id | https://openalex.org/C206345919 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41219115257263184 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[10].display_name | Resource (disambiguation) |
| concepts[11].id | https://openalex.org/C120314980 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34760957956314087 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[11].display_name | Distributed computing |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3330986797809601 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.15666869282722473 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.12584200501441956 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C142362112 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[15].display_name | Art |
| concepts[16].id | https://openalex.org/C31258907 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[16].display_name | Computer network |
| concepts[17].id | https://openalex.org/C38652104 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[17].display_name | Computer security |
| concepts[18].id | https://openalex.org/C153349607 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[18].display_name | Visual arts |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7809540033340454 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[1].score | 0.6077147722244263 |
| keywords[1].display_name | Mathematical optimization |
| keywords[2].id | https://openalex.org/keywords/heuristic |
| keywords[2].score | 0.5480473637580872 |
| keywords[2].display_name | Heuristic |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.5237179398536682 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/differentiable-function |
| keywords[4].score | 0.5046175718307495 |
| keywords[4].display_name | Differentiable function |
| keywords[5].id | https://openalex.org/keywords/architecture |
| keywords[5].score | 0.49887967109680176 |
| keywords[5].display_name | Architecture |
| keywords[6].id | https://openalex.org/keywords/resource-allocation |
| keywords[6].score | 0.4771565794944763 |
| keywords[6].display_name | Resource allocation |
| keywords[7].id | https://openalex.org/keywords/computation |
| keywords[7].score | 0.4608914256095886 |
| keywords[7].display_name | Computation |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4442099332809448 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/network-architecture |
| keywords[9].score | 0.43535709381103516 |
| keywords[9].display_name | Network architecture |
| keywords[10].id | https://openalex.org/keywords/resource |
| keywords[10].score | 0.41219115257263184 |
| keywords[10].display_name | Resource (disambiguation) |
| keywords[11].id | https://openalex.org/keywords/distributed-computing |
| keywords[11].score | 0.34760957956314087 |
| keywords[11].display_name | Distributed computing |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3330986797809601 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.15666869282722473 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.12584200501441956 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1904.03786 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1904.03786 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1904.03786 |
| locations[1].id | doi:10.48550/arxiv.1904.03786 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1904.03786 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100575188 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yunyang Xiong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yunyang Xiong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5089308107 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ronak Mehta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ronak Mehta |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100778999 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8014-6939 |
| authorships[2].author.display_name | Vikas Singh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Vikas Singh |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1904.03786 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help? |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4285277090, https://openalex.org/W4327738859, https://openalex.org/W2348722996, https://openalex.org/W2334570605, https://openalex.org/W3181683615, https://openalex.org/W4286826125, https://openalex.org/W1633485514, https://openalex.org/W1604739066, https://openalex.org/W2115878407, https://openalex.org/W1980454230 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1904.03786 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1904.03786 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1904.03786 |
| primary_location.id | pmh:oai:arXiv.org:1904.03786 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1904.03786 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1904.03786 |
| publication_date | 2019-04-08 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2610817424, https://openalex.org/W2553303224, https://openalex.org/W2785430118, https://openalex.org/W2963446712, https://openalex.org/W2194775991, https://openalex.org/W2963125010, https://openalex.org/W2964259004, https://openalex.org/W2963918968, https://openalex.org/W2964217527, https://openalex.org/W2402144811, https://openalex.org/W2886851211, https://openalex.org/W2767002384, https://openalex.org/W2963821229, https://openalex.org/W2155893237, https://openalex.org/W2963674932, https://openalex.org/W2964081807, https://openalex.org/W2097117768, https://openalex.org/W2091600398, https://openalex.org/W2756085244, https://openalex.org/W2612445135, https://openalex.org/W3118608800, https://openalex.org/W2967733054, https://openalex.org/W2944779197, https://openalex.org/W2902994895, https://openalex.org/W2951886768, https://openalex.org/W2808938483, https://openalex.org/W2166172188, https://openalex.org/W2951104886, https://openalex.org/W1517928915, https://openalex.org/W2964350391, https://openalex.org/W2963163009, https://openalex.org/W2108598243, https://openalex.org/W2785366763, https://openalex.org/W2982479999, https://openalex.org/W2963536136, https://openalex.org/W2101309634, https://openalex.org/W2788853733, https://openalex.org/W2928668369, https://openalex.org/W2963815651, https://openalex.org/W2950220847, https://openalex.org/W2748513770 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 95, 189 |
| abstract_inverted_index.-- | 98, 119 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.We | 87 |
| abstract_inverted_index.as | 91 |
| abstract_inverted_index.by | 188 |
| abstract_inverted_index.if | 60 |
| abstract_inverted_index.in | 52 |
| abstract_inverted_index.is | 6, 38, 193 |
| abstract_inverted_index.of | 2, 94, 105, 125 |
| abstract_inverted_index.on | 10, 85, 128, 151, 159 |
| abstract_inverted_index.or | 18 |
| abstract_inverted_index.to | 46, 122, 137 |
| abstract_inverted_index.we | 61, 99, 131, 147, 179 |
| abstract_inverted_index.And | 59 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 15, 41, 116, 161, 186 |
| abstract_inverted_index.are | 72 |
| abstract_inverted_index.for | 141, 175 |
| abstract_inverted_index.not | 43, 111 |
| abstract_inverted_index.now | 78 |
| abstract_inverted_index.set | 96, 107 |
| abstract_inverted_index.the | 33, 36, 69, 75, 92, 102, 123, 152 |
| abstract_inverted_index.use | 53 |
| abstract_inverted_index.via | 20 |
| abstract_inverted_index.(but | 110 |
| abstract_inverted_index.Most | 50 |
| abstract_inverted_index.This | 154 |
| abstract_inverted_index.also | 42 |
| abstract_inverted_index.find | 100, 180 |
| abstract_inverted_index.gain | 115 |
| abstract_inverted_index.have | 148 |
| abstract_inverted_index.idea | 124 |
| abstract_inverted_index.much | 194 |
| abstract_inverted_index.must | 77 |
| abstract_inverted_index.over | 27 |
| abstract_inverted_index.than | 170 |
| abstract_inverted_index.that | 64, 101, 192 |
| abstract_inverted_index.this | 89, 106, 129 |
| abstract_inverted_index.very | 44 |
| abstract_inverted_index.want | 62 |
| abstract_inverted_index.when | 157 |
| abstract_inverted_index.with | 81, 166, 183 |
| abstract_inverted_index.Based | 127 |
| abstract_inverted_index.above | 70 |
| abstract_inverted_index.adapt | 132 |
| abstract_inverted_index.based | 9 |
| abstract_inverted_index.case, | 35 |
| abstract_inverted_index.fewer | 184 |
| abstract_inverted_index.human | 11 |
| abstract_inverted_index.large | 21 |
| abstract_inverted_index.often | 39, 109 |
| abstract_inverted_index.scale | 22 |
| abstract_inverted_index.today | 54 |
| abstract_inverted_index.using | 13 |
| abstract_inverted_index.where | 146 |
| abstract_inverted_index.better | 168 |
| abstract_inverted_index.budget | 83 |
| abstract_inverted_index.design | 1 |
| abstract_inverted_index.either | 8 |
| abstract_inverted_index.latter | 34 |
| abstract_inverted_index.method | 191 |
| abstract_inverted_index.mobile | 176 |
| abstract_inverted_index.models | 173 |
| abstract_inverted_index.neural | 3, 142 |
| abstract_inverted_index.obtain | 138 |
| abstract_inverted_index.scheme | 156 |
| abstract_inverted_index.search | 76, 190 |
| abstract_inverted_index.simple | 155 |
| abstract_inverted_index.within | 134 |
| abstract_inverted_index.always) | 112 |
| abstract_inverted_index.applied | 158 |
| abstract_inverted_index.balance | 79 |
| abstract_inverted_index.because | 74 |
| abstract_inverted_index.central | 121 |
| abstract_inverted_index.certain | 82 |
| abstract_inverted_index.current | 171 |
| abstract_inverted_index.faster. | 195 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.network | 4, 143 |
| abstract_inverted_index.problem | 90 |
| abstract_inverted_index.require | 55 |
| abstract_inverted_index.satisfy | 66 |
| abstract_inverted_index.schemes | 140 |
| abstract_inverted_index.search, | 145 |
| abstract_inverted_index.sizable | 56 |
| abstract_inverted_index.tackled | 19 |
| abstract_inverted_index.accuracy | 80 |
| abstract_inverted_index.amenable | 45 |
| abstract_inverted_index.behavior | 104 |
| abstract_inverted_index.choices. | 31 |
| abstract_inverted_index.designed | 174 |
| abstract_inverted_index.devices. | 177 |
| abstract_inverted_index.discrete | 29, 135 |
| abstract_inverted_index.distinct | 28 |
| abstract_inverted_index.feedback | 17 |
| abstract_inverted_index.function | 97, 108 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.marginal | 114 |
| abstract_inverted_index.methods. | 49 |
| abstract_inverted_index.networks | 63 |
| abstract_inverted_index.resource | 67, 149 |
| abstract_inverted_index.CIFAR-100 | 160 |
| abstract_inverted_index.ImageNet, | 162 |
| abstract_inverted_index.empirical | 16, 103 |
| abstract_inverted_index.expertise | 12 |
| abstract_inverted_index.formulate | 88 |
| abstract_inverted_index.heuristic | 139 |
| abstract_inverted_index.performed | 26 |
| abstract_inverted_index.satisfies | 113 |
| abstract_inverted_index.algorithms | 133 |
| abstract_inverted_index.challenges | 71 |
| abstract_inverted_index.frequently | 7 |
| abstract_inverted_index.identifies | 163 |
| abstract_inverted_index.parameters | 185 |
| abstract_inverted_index.principles | 118 |
| abstract_inverted_index.properties | 120 |
| abstract_inverted_index.resources. | 58, 86 |
| abstract_inverted_index.strategies | 25 |
| abstract_inverted_index.constraints | 84, 150 |
| abstract_inverted_index.exacerbated | 73 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.trial/error | 14 |
| abstract_inverted_index.additionally | 65 |
| abstract_inverted_index.architecture | 30, 144 |
| abstract_inverted_index.computations | 187 |
| abstract_inverted_index.constraints, | 68 |
| abstract_inverted_index.monotonicity | 117 |
| abstract_inverted_index.observation, | 130 |
| abstract_inverted_index.optimization | 37, 48, 93, 136 |
| abstract_inverted_index.quantifiably | 167 |
| abstract_inverted_index.Specifically, | 178 |
| abstract_inverted_index.architecture. | 153 |
| abstract_inverted_index.architectures | 5, 165, 182 |
| abstract_inverted_index.computational | 57 |
| abstract_inverted_index.reinforcement | 23 |
| abstract_inverted_index.submodularity. | 126 |
| abstract_inverted_index.derivative-free | 47 |
| abstract_inverted_index.high-performing | 181 |
| abstract_inverted_index.state-of-the-art | 172 |
| abstract_inverted_index.non-differentiable | 40 |
| abstract_inverted_index.resource-constrained | 164 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |