Resource-Efficient Computing in Wearable Systems Article Swipe
YOU?
·
· 2019
· Open Access
·
We propose two optimization techniques to minimize memory usage and computation while meeting system timing constraints for real-time classification in wearable systems. Our method derives a hierarchical classifier structure for Support Vector Machine (SVM) in order to reduce the amount of computations, based on the probability distribution of output classes occurrences. Also, we propose a memory optimization technique based on SVM parameters, which results in storing fewer support vectors and as a result requiring less memory. To demonstrate the efficiency of our proposed techniques, we performed an activity recognition experiment and were able to save up to 35% and 56% in memory storage when classifying 14 and 6 different activities, respectively. In addition, we demonstrated that there is a trade-off between accuracy of classification and memory savings, which can be controlled based on application requirements.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/pdf/1907.03247v1
- OA Status
- green
- Cited By
- 1
- References
- 22
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2953948331
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2953948331Canonical identifier for this work in OpenAlex
- Title
-
Resource-Efficient Computing in Wearable SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-07Full publication date if available
- Authors
-
Mahdi Pedram, Mahsan Rofouei, Francesco Fraternali, Zhila Esna Ashari, Hassan GhasemzadehList of authors in order
- Landing page
-
https://arxiv.org/pdf/1907.03247v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1907.03247v1Direct OA link when available
- Concepts
-
Computer science, Support vector machine, Wearable computer, Computation, Classifier (UML), Machine learning, Artificial intelligence, Data mining, Embedded system, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2953948331 |
|---|---|
| doi | |
| ids.mag | 2953948331 |
| ids.openalex | https://openalex.org/W2953948331 |
| fwci | |
| type | preprint |
| title | Resource-Efficient Computing in Wearable Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T10273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9746000170707703 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | IoT and Edge/Fog Computing |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9351999759674072 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8082997798919678 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7377898097038269 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C150594956 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6827319860458374 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[2].display_name | Wearable computer |
| concepts[3].id | https://openalex.org/C45374587 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6595743298530579 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[3].display_name | Computation |
| concepts[4].id | https://openalex.org/C95623464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5727274417877197 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[4].display_name | Classifier (UML) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43363314867019653 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4096187949180603 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38593095541000366 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C149635348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1739654839038849 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[8].display_name | Embedded system |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.17115288972854614 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8082997798919678 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.7377898097038269 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/wearable-computer |
| keywords[2].score | 0.6827319860458374 |
| keywords[2].display_name | Wearable computer |
| keywords[3].id | https://openalex.org/keywords/computation |
| keywords[3].score | 0.6595743298530579 |
| keywords[3].display_name | Computation |
| keywords[4].id | https://openalex.org/keywords/classifier |
| keywords[4].score | 0.5727274417877197 |
| keywords[4].display_name | Classifier (UML) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.43363314867019653 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4096187949180603 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.38593095541000366 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/embedded-system |
| keywords[8].score | 0.1739654839038849 |
| keywords[8].display_name | Embedded system |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.17115288972854614 |
| keywords[9].display_name | Algorithm |
| language | en |
| locations[0].id | mag:2953948331 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/pdf/1907.03247v1 |
| authorships[0].author.id | https://openalex.org/A5001759639 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5742-6529 |
| authorships[0].author.display_name | Mahdi Pedram |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mahdi Pedram |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029068137 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mahsan Rofouei |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mahsan Rofouei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037217528 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Francesco Fraternali |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Francesco Fraternali |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5074278707 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0454-7794 |
| authorships[3].author.display_name | Zhila Esna Ashari |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhila Esna Ashari |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5007139473 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1844-1416 |
| authorships[4].author.display_name | Hassan Ghasemzadeh |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hassan Ghasemzadeh |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1907.03247v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Resource-Efficient Computing in Wearable Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| related_works | https://openalex.org/W2375321260, https://openalex.org/W2989820052, https://openalex.org/W2709829622, https://openalex.org/W3169811555, https://openalex.org/W3018556791, https://openalex.org/W2799225373, https://openalex.org/W2499900168, https://openalex.org/W2891253335, https://openalex.org/W2892644737, https://openalex.org/W3211659500, https://openalex.org/W3147053158, https://openalex.org/W2350504207, https://openalex.org/W1568785492, https://openalex.org/W2982446375, https://openalex.org/W2727099691, https://openalex.org/W3008827736, https://openalex.org/W2562534336, https://openalex.org/W3159558974, https://openalex.org/W2936827341, https://openalex.org/W3199406030 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | mag:2953948331 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/1907.03247v1 |
| primary_location.id | mag:2953948331 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/pdf/1907.03247v1 |
| publication_date | 2019-07-07 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2056020968, https://openalex.org/W2021302562, https://openalex.org/W2081259425, https://openalex.org/W1994115836, https://openalex.org/W2782837544, https://openalex.org/W2133864802, https://openalex.org/W2153657339, https://openalex.org/W2060108852, https://openalex.org/W2084553975, https://openalex.org/W2623595444, https://openalex.org/W2012514949, https://openalex.org/W2133674562, https://openalex.org/W2794819237, https://openalex.org/W2161629484, https://openalex.org/W2119821739, https://openalex.org/W1972950739, https://openalex.org/W2023453288, https://openalex.org/W2164841154, https://openalex.org/W2155981274, https://openalex.org/W2157239837, https://openalex.org/W2908705712, https://openalex.org/W2141062690 |
| referenced_works_count | 22 |
| abstract_inverted_index.6 | 107 |
| abstract_inverted_index.a | 25, 54, 71, 118 |
| abstract_inverted_index.14 | 105 |
| abstract_inverted_index.In | 111 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.as | 70 |
| abstract_inverted_index.be | 129 |
| abstract_inverted_index.in | 19, 34, 64, 100 |
| abstract_inverted_index.is | 117 |
| abstract_inverted_index.of | 40, 47, 80, 122 |
| abstract_inverted_index.on | 43, 59, 132 |
| abstract_inverted_index.to | 5, 36, 93, 96 |
| abstract_inverted_index.up | 95 |
| abstract_inverted_index.we | 52, 84, 113 |
| abstract_inverted_index.35% | 97 |
| abstract_inverted_index.56% | 99 |
| abstract_inverted_index.Our | 22 |
| abstract_inverted_index.SVM | 60 |
| abstract_inverted_index.and | 9, 69, 90, 98, 106, 124 |
| abstract_inverted_index.can | 128 |
| abstract_inverted_index.for | 16, 29 |
| abstract_inverted_index.our | 81 |
| abstract_inverted_index.the | 38, 44, 78 |
| abstract_inverted_index.two | 2 |
| abstract_inverted_index.able | 92 |
| abstract_inverted_index.less | 74 |
| abstract_inverted_index.save | 94 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.were | 91 |
| abstract_inverted_index.when | 103 |
| abstract_inverted_index.(SVM) | 33 |
| abstract_inverted_index.Also, | 51 |
| abstract_inverted_index.based | 42, 58, 131 |
| abstract_inverted_index.fewer | 66 |
| abstract_inverted_index.order | 35 |
| abstract_inverted_index.there | 116 |
| abstract_inverted_index.usage | 8 |
| abstract_inverted_index.which | 62, 127 |
| abstract_inverted_index.while | 11 |
| abstract_inverted_index.Vector | 31 |
| abstract_inverted_index.amount | 39 |
| abstract_inverted_index.memory | 7, 55, 101, 125 |
| abstract_inverted_index.method | 23 |
| abstract_inverted_index.output | 48 |
| abstract_inverted_index.reduce | 37 |
| abstract_inverted_index.result | 72 |
| abstract_inverted_index.system | 13 |
| abstract_inverted_index.timing | 14 |
| abstract_inverted_index.Machine | 32 |
| abstract_inverted_index.Support | 30 |
| abstract_inverted_index.between | 120 |
| abstract_inverted_index.classes | 49 |
| abstract_inverted_index.derives | 24 |
| abstract_inverted_index.meeting | 12 |
| abstract_inverted_index.memory. | 75 |
| abstract_inverted_index.propose | 1, 53 |
| abstract_inverted_index.results | 63 |
| abstract_inverted_index.storage | 102 |
| abstract_inverted_index.storing | 65 |
| abstract_inverted_index.support | 67 |
| abstract_inverted_index.vectors | 68 |
| abstract_inverted_index.accuracy | 121 |
| abstract_inverted_index.activity | 87 |
| abstract_inverted_index.minimize | 6 |
| abstract_inverted_index.proposed | 82 |
| abstract_inverted_index.savings, | 126 |
| abstract_inverted_index.systems. | 21 |
| abstract_inverted_index.wearable | 20 |
| abstract_inverted_index.addition, | 112 |
| abstract_inverted_index.different | 108 |
| abstract_inverted_index.performed | 85 |
| abstract_inverted_index.real-time | 17 |
| abstract_inverted_index.requiring | 73 |
| abstract_inverted_index.structure | 28 |
| abstract_inverted_index.technique | 57 |
| abstract_inverted_index.trade-off | 119 |
| abstract_inverted_index.classifier | 27 |
| abstract_inverted_index.controlled | 130 |
| abstract_inverted_index.efficiency | 79 |
| abstract_inverted_index.experiment | 89 |
| abstract_inverted_index.techniques | 4 |
| abstract_inverted_index.activities, | 109 |
| abstract_inverted_index.application | 133 |
| abstract_inverted_index.classifying | 104 |
| abstract_inverted_index.computation | 10 |
| abstract_inverted_index.constraints | 15 |
| abstract_inverted_index.demonstrate | 77 |
| abstract_inverted_index.parameters, | 61 |
| abstract_inverted_index.probability | 45 |
| abstract_inverted_index.recognition | 88 |
| abstract_inverted_index.techniques, | 83 |
| abstract_inverted_index.demonstrated | 114 |
| abstract_inverted_index.distribution | 46 |
| abstract_inverted_index.hierarchical | 26 |
| abstract_inverted_index.occurrences. | 50 |
| abstract_inverted_index.optimization | 3, 56 |
| abstract_inverted_index.computations, | 41 |
| abstract_inverted_index.requirements. | 134 |
| abstract_inverted_index.respectively. | 110 |
| abstract_inverted_index.classification | 18, 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile |