Resource Recommendation Based on Industrial Knowledge Graph in Low-Resource Conditions Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/s44196-022-00097-2
Resource recommendation is extremely challenging under low-resource conditions because representation learning models require sufficient triplets for their training, and the presence of massive long-tail resources leads to data sparsity and cold-start problems. In this paper, an industrial knowledge graph is developed to integrate resources for manufacturing enterprises, and we further formulate long-tail recommendations as a few-shot relational learning problem of learning-to-recommend resources with few interactions under low-resource conditions. First, an industrial knowledge graph is constructed based on the predesigned resource schema. Second, we conduct schema-based reasoning on the schema to heuristically complete the knowledge graph. At last, we propose a multi-head attention-based meta relational learning model with schema-based reasoning to recommend long-tail resources under low-resource conditions. With the IN-Train setting, 5-shot experimental results on the NELL-One and Wiki-One datasets achieve average improvements of 28.8 and 13.3% respectively, compared with MetaR. Empirically, the attention mechanism with relation space translation learns the most important relations for fast convergence. The proposed graph-based platform specifies how to recommend resources using the industrial knowledge graph under low-resource conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s44196-022-00097-2
- https://link.springer.com/content/pdf/10.1007/s44196-022-00097-2.pdf
- OA Status
- gold
- Cited By
- 17
- References
- 85
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283786071
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283786071Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s44196-022-00097-2Digital Object Identifier
- Title
-
Resource Recommendation Based on Industrial Knowledge Graph in Low-Resource ConditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-03Full publication date if available
- Authors
-
Yangshengyan Liu, Fu Gu, Xinjian Gu, Yijie Wu, Jianfeng Guo, Jin ZhangList of authors in order
- Landing page
-
https://doi.org/10.1007/s44196-022-00097-2Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s44196-022-00097-2.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s44196-022-00097-2.pdfDirect OA link when available
- Concepts
-
Computer science, Schema (genetic algorithms), Graph, Knowledge graph, Resource (disambiguation), Knowledge management, Artificial intelligence, Machine learning, Theoretical computer science, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 5, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
85Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283786071 |
|---|---|
| doi | https://doi.org/10.1007/s44196-022-00097-2 |
| ids.doi | https://doi.org/10.1007/s44196-022-00097-2 |
| ids.openalex | https://openalex.org/W4283786071 |
| fwci | 3.32857994 |
| type | article |
| title | Resource Recommendation Based on Industrial Knowledge Graph in Low-Resource Conditions |
| awards[0].id | https://openalex.org/G3596424380 |
| awards[0].funder_id | https://openalex.org/F4320338464 |
| awards[0].display_name | |
| awards[0].funder_award_id | No. LZ15E050003 |
| awards[0].funder_display_name | Natural Science Foundation of Zhejiang Province |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10203 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Recommender Systems and Techniques |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320338464 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | Natural Science Foundation of Zhejiang Province |
| is_xpac | False |
| apc_list.value | 1390 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1704 |
| apc_paid.value | 1390 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1704 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7478165030479431 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C52146309 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7168928384780884 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7431116 |
| concepts[1].display_name | Schema (genetic algorithms) |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.546369194984436 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C2987255567 |
| concepts[3].level | 2 |
| concepts[3].score | 0.466524213552475 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q33002955 |
| concepts[3].display_name | Knowledge graph |
| concepts[4].id | https://openalex.org/C206345919 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4169793426990509 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[4].display_name | Resource (disambiguation) |
| concepts[5].id | https://openalex.org/C56739046 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4015895128250122 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[5].display_name | Knowledge management |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3680587410926819 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3074410557746887 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3048397898674011 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7478165030479431 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/schema |
| keywords[1].score | 0.7168928384780884 |
| keywords[1].display_name | Schema (genetic algorithms) |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.546369194984436 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/knowledge-graph |
| keywords[3].score | 0.466524213552475 |
| keywords[3].display_name | Knowledge graph |
| keywords[4].id | https://openalex.org/keywords/resource |
| keywords[4].score | 0.4169793426990509 |
| keywords[4].display_name | Resource (disambiguation) |
| keywords[5].id | https://openalex.org/keywords/knowledge-management |
| keywords[5].score | 0.4015895128250122 |
| keywords[5].display_name | Knowledge management |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3680587410926819 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3074410557746887 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.3048397898674011 |
| keywords[8].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1007/s44196-022-00097-2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190680769 |
| locations[0].source.issn | 1875-6883, 1875-6891 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1875-6883 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Computational Intelligence Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s44196-022-00097-2.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computational Intelligence Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s44196-022-00097-2 |
| locations[1].id | pmh:oai:doaj.org/article:08b801b305e647fdbd82ea1a126eda7f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Computational Intelligence Systems, Vol 15, Iss 1, Pp 1-21 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/08b801b305e647fdbd82ea1a126eda7f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5053066086 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yangshengyan Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yangshengyan Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[1].author.id | https://openalex.org/A5088831751 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fu Gu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fu Gu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[2].author.id | https://openalex.org/A5113696823 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xinjian Gu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[2].institutions[0].id | https://openalex.org/I76130692 |
| authorships[2].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinjian Gu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[3].author.id | https://openalex.org/A5101758311 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1441-1583 |
| authorships[3].author.display_name | Yijie Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yijie Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| authorships[4].author.id | https://openalex.org/A5101959758 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2201-3219 |
| authorships[4].author.display_name | Jianfeng Guo |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing, 100049, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210165038 |
| authorships[4].institutions[0].ror | https://ror.org/05qbk4x57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Chinese Academy of Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jianfeng Guo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing, 100049, China |
| authorships[5].author.id | https://openalex.org/A5031388726 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0197-3624 |
| authorships[5].author.display_name | Jin Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Industrial and System Engineering, Zhejiang University, Hangzhou, 310027, China |
| authorships[5].institutions[0].id | https://openalex.org/I76130692 |
| authorships[5].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jin Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Industrial and System Engineering, Zhejiang University, Hangzhou, 310027, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s44196-022-00097-2.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Resource Recommendation Based on Industrial Knowledge Graph in Low-Resource Conditions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2099278314, https://openalex.org/W2394886764, https://openalex.org/W2282598741, https://openalex.org/W2361540170, https://openalex.org/W1637796940, https://openalex.org/W40856544, https://openalex.org/W2130653301, https://openalex.org/W2385719512, https://openalex.org/W1956201883, https://openalex.org/W3180134568 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s44196-022-00097-2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190680769 |
| best_oa_location.source.issn | 1875-6883, 1875-6891 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1875-6883 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Computational Intelligence Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44196-022-00097-2.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computational Intelligence Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s44196-022-00097-2 |
| primary_location.id | doi:10.1007/s44196-022-00097-2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190680769 |
| primary_location.source.issn | 1875-6883, 1875-6891 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1875-6883 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Computational Intelligence Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44196-022-00097-2.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computational Intelligence Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s44196-022-00097-2 |
| publication_date | 2022-07-03 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2785339424, https://openalex.org/W4231383848, https://openalex.org/W3031279360, https://openalex.org/W1972389818, https://openalex.org/W2804137815, https://openalex.org/W3093922720, https://openalex.org/W2913560138, https://openalex.org/W2509893387, https://openalex.org/W2990670023, https://openalex.org/W2909555347, https://openalex.org/W2919115771, https://openalex.org/W3136021864, https://openalex.org/W3091993229, https://openalex.org/W2094286023, https://openalex.org/W2801655716, https://openalex.org/W2975714303, https://openalex.org/W3020465598, https://openalex.org/W2944743044, https://openalex.org/W2801992635, https://openalex.org/W2964732194, https://openalex.org/W3124001134, https://openalex.org/W3089210493, https://openalex.org/W2010187764, https://openalex.org/W2743159750, https://openalex.org/W2963869731, https://openalex.org/W2792839191, https://openalex.org/W2620787630, https://openalex.org/W2080133951, https://openalex.org/W2897143112, https://openalex.org/W2899962164, https://openalex.org/W3088592142, https://openalex.org/W2907987418, https://openalex.org/W2734291210, https://openalex.org/W2807953812, https://openalex.org/W3021574622, https://openalex.org/W2915445453, https://openalex.org/W3143911195, https://openalex.org/W2906879279, https://openalex.org/W3117983049, https://openalex.org/W3126598378, https://openalex.org/W2135632080, https://openalex.org/W2433281745, https://openalex.org/W2250342289, https://openalex.org/W2887597838, https://openalex.org/W2997358199, https://openalex.org/W3109953446, https://openalex.org/W3136296618, https://openalex.org/W2759136286, https://openalex.org/W3012584427, https://openalex.org/W2979300990, https://openalex.org/W2889234142, https://openalex.org/W2971167006, https://openalex.org/W2070462463, https://openalex.org/W2897736640, https://openalex.org/W2571757885, https://openalex.org/W2123442489, https://openalex.org/W2974448196, https://openalex.org/W3174126795, https://openalex.org/W2913087274, https://openalex.org/W2945827377, https://openalex.org/W2971142670, https://openalex.org/W4250617351, https://openalex.org/W3200698006, https://openalex.org/W3094700584, https://openalex.org/W2617205088, https://openalex.org/W2787531469, https://openalex.org/W2970400306, https://openalex.org/W2184957013, https://openalex.org/W3089885888, https://openalex.org/W3155775551, https://openalex.org/W4205848394, https://openalex.org/W4214901201, https://openalex.org/W3094253649, https://openalex.org/W2283196293, https://openalex.org/W6600480908, https://openalex.org/W6602811707, https://openalex.org/W2041432068, https://openalex.org/W3023584873, https://openalex.org/W2963323306, https://openalex.org/W2945623882, https://openalex.org/W3205185363, https://openalex.org/W3098087397, https://openalex.org/W3106439716, https://openalex.org/W3101553402, https://openalex.org/W3099823079 |
| referenced_works_count | 85 |
| abstract_inverted_index.a | 55, 100 |
| abstract_inverted_index.At | 96 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.an | 36, 70 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.is | 3, 40, 74 |
| abstract_inverted_index.of | 22, 60, 133 |
| abstract_inverted_index.on | 77, 87, 124 |
| abstract_inverted_index.to | 27, 42, 90, 110, 163 |
| abstract_inverted_index.we | 49, 83, 98 |
| abstract_inverted_index.The | 157 |
| abstract_inverted_index.and | 19, 30, 48, 127, 135 |
| abstract_inverted_index.few | 64 |
| abstract_inverted_index.for | 16, 45, 154 |
| abstract_inverted_index.how | 162 |
| abstract_inverted_index.the | 20, 78, 88, 93, 118, 125, 142, 150, 167 |
| abstract_inverted_index.28.8 | 134 |
| abstract_inverted_index.With | 117 |
| abstract_inverted_index.data | 28 |
| abstract_inverted_index.fast | 155 |
| abstract_inverted_index.meta | 103 |
| abstract_inverted_index.most | 151 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.with | 63, 107, 139, 145 |
| abstract_inverted_index.13.3% | 136 |
| abstract_inverted_index.based | 76 |
| abstract_inverted_index.graph | 39, 73, 170 |
| abstract_inverted_index.last, | 97 |
| abstract_inverted_index.leads | 26 |
| abstract_inverted_index.model | 106 |
| abstract_inverted_index.space | 147 |
| abstract_inverted_index.their | 17 |
| abstract_inverted_index.under | 6, 66, 114, 171 |
| abstract_inverted_index.using | 166 |
| abstract_inverted_index.5-shot | 121 |
| abstract_inverted_index.First, | 69 |
| abstract_inverted_index.MetaR. | 140 |
| abstract_inverted_index.graph. | 95 |
| abstract_inverted_index.learns | 149 |
| abstract_inverted_index.models | 12 |
| abstract_inverted_index.paper, | 35 |
| abstract_inverted_index.schema | 89 |
| abstract_inverted_index.Second, | 82 |
| abstract_inverted_index.achieve | 130 |
| abstract_inverted_index.average | 131 |
| abstract_inverted_index.because | 9 |
| abstract_inverted_index.conduct | 84 |
| abstract_inverted_index.further | 50 |
| abstract_inverted_index.massive | 23 |
| abstract_inverted_index.problem | 59 |
| abstract_inverted_index.propose | 99 |
| abstract_inverted_index.require | 13 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.schema. | 81 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.IN-Train | 119 |
| abstract_inverted_index.NELL-One | 126 |
| abstract_inverted_index.Resource | 1 |
| abstract_inverted_index.Wiki-One | 128 |
| abstract_inverted_index.compared | 138 |
| abstract_inverted_index.complete | 92 |
| abstract_inverted_index.datasets | 129 |
| abstract_inverted_index.few-shot | 56 |
| abstract_inverted_index.learning | 11, 58, 105 |
| abstract_inverted_index.platform | 160 |
| abstract_inverted_index.presence | 21 |
| abstract_inverted_index.proposed | 158 |
| abstract_inverted_index.relation | 146 |
| abstract_inverted_index.resource | 80 |
| abstract_inverted_index.setting, | 120 |
| abstract_inverted_index.sparsity | 29 |
| abstract_inverted_index.triplets | 15 |
| abstract_inverted_index.attention | 143 |
| abstract_inverted_index.developed | 41 |
| abstract_inverted_index.extremely | 4 |
| abstract_inverted_index.formulate | 51 |
| abstract_inverted_index.important | 152 |
| abstract_inverted_index.integrate | 43 |
| abstract_inverted_index.knowledge | 38, 72, 94, 169 |
| abstract_inverted_index.long-tail | 24, 52, 112 |
| abstract_inverted_index.mechanism | 144 |
| abstract_inverted_index.problems. | 32 |
| abstract_inverted_index.reasoning | 86, 109 |
| abstract_inverted_index.recommend | 111, 164 |
| abstract_inverted_index.relations | 153 |
| abstract_inverted_index.resources | 25, 44, 62, 113, 165 |
| abstract_inverted_index.specifies | 161 |
| abstract_inverted_index.training, | 18 |
| abstract_inverted_index.cold-start | 31 |
| abstract_inverted_index.conditions | 8 |
| abstract_inverted_index.industrial | 37, 71, 168 |
| abstract_inverted_index.multi-head | 101 |
| abstract_inverted_index.relational | 57, 104 |
| abstract_inverted_index.sufficient | 14 |
| abstract_inverted_index.challenging | 5 |
| abstract_inverted_index.conditions. | 68, 116, 173 |
| abstract_inverted_index.constructed | 75 |
| abstract_inverted_index.graph-based | 159 |
| abstract_inverted_index.predesigned | 79 |
| abstract_inverted_index.translation | 148 |
| abstract_inverted_index.Empirically, | 141 |
| abstract_inverted_index.convergence. | 156 |
| abstract_inverted_index.enterprises, | 47 |
| abstract_inverted_index.experimental | 122 |
| abstract_inverted_index.improvements | 132 |
| abstract_inverted_index.interactions | 65 |
| abstract_inverted_index.low-resource | 7, 67, 115, 172 |
| abstract_inverted_index.schema-based | 85, 108 |
| abstract_inverted_index.heuristically | 91 |
| abstract_inverted_index.manufacturing | 46 |
| abstract_inverted_index.respectively, | 137 |
| abstract_inverted_index.recommendation | 2 |
| abstract_inverted_index.representation | 10 |
| abstract_inverted_index.attention-based | 102 |
| abstract_inverted_index.recommendations | 53 |
| abstract_inverted_index.learning-to-recommend | 61 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.90511696 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |