ResPF: Residual Poisson Flow for Efficient and Physically Consistent Sparse-View CT Reconstruction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.06400
Sparse-view computed tomography (CT) is a practical solution to reduce radiation dose, but the resulting ill-posed inverse problem poses significant challenges for accurate image reconstruction. Although deep learning and diffusion-based methods have shown promising results, they often lack physical interpretability or suffer from high computational costs due to iterative sampling starting from random noise. Recent advances in generative modeling, particularly Poisson Flow Generative Models (PFGM), enable high-fidelity image synthesis by modeling the full data distribution. In this work, we propose Residual Poisson Flow (ResPF) Generative Models for efficient and accurate sparse-view CT reconstruction. Based on PFGM++, ResPF integrates conditional guidance from sparse measurements and employs a hijacking strategy to significantly reduce sampling cost by skipping redundant initial steps. However, skipping early stages can degrade reconstruction quality and introduce unrealistic structures. To address this, we embed a data-consistency into each iteration, ensuring fidelity to sparse-view measurements. Yet, PFGM sampling relies on a fixed ordinary differential equation (ODE) trajectory induced by electrostatic fields, which can be disrupted by step-wise data consistency, resulting in unstable or degraded reconstructions. Inspired by ResNet, we introduce a residual fusion module to linearly combine generative outputs with data-consistent reconstructions, effectively preserving trajectory continuity. To the best of our knowledge, this is the first application of Poisson flow models to sparse-view CT. Extensive experiments on synthetic and clinical datasets demonstrate that ResPF achieves superior reconstruction quality, faster inference, and stronger robustness compared to state-of-the-art iterative, learning-based, and diffusion models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.06400
- https://arxiv.org/pdf/2506.06400
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417118040
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417118040Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.06400Digital Object Identifier
- Title
-
ResPF: Residual Poisson Flow for Efficient and Physically Consistent Sparse-View CT ReconstructionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-06Full publication date if available
- Authors
-
Y. Liu, Han Shuo, Yu Shi, Shuyi Fan, Hengyong YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.06400Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.06400Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.06400Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417118040 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.06400 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.06400 |
| ids.openalex | https://openalex.org/W4417118040 |
| fwci | |
| type | preprint |
| title | ResPF: Residual Poisson Flow for Efficient and Physically Consistent Sparse-View CT Reconstruction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.06400 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.06400 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.06400 |
| locations[1].id | doi:10.48550/arxiv.2506.06400 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.06400 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5036484744 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1879-8834 |
| authorships[0].author.display_name | Y. Liu |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Liu, Yongtong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101111488 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Han Shuo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Han, Shuo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5010273605 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-1693-2713 |
| authorships[2].author.display_name | Yu Shi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shi, Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015900072 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shuyi Fan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fan, Shuyi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5052662150 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5852-0813 |
| authorships[4].author.display_name | Hengyong Yu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yu, Hengyong |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.06400 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ResPF: Residual Poisson Flow for Efficient and Physically Consistent Sparse-View CT Reconstruction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:45:41.426853 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.06400 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.06400 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.06400 |
| primary_location.id | pmh:oai:arXiv.org:2506.06400 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.06400 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.06400 |
| publication_date | 2025-06-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 105, 135, 150, 180 |
| abstract_inverted_index.CT | 91 |
| abstract_inverted_index.In | 75 |
| abstract_inverted_index.To | 130, 196 |
| abstract_inverted_index.be | 163 |
| abstract_inverted_index.by | 69, 113, 158, 165, 176 |
| abstract_inverted_index.in | 56, 170 |
| abstract_inverted_index.is | 4, 203 |
| abstract_inverted_index.of | 199, 207 |
| abstract_inverted_index.on | 94, 149, 216 |
| abstract_inverted_index.or | 40, 172 |
| abstract_inverted_index.to | 8, 47, 108, 142, 184, 211, 234 |
| abstract_inverted_index.we | 78, 133, 178 |
| abstract_inverted_index.CT. | 213 |
| abstract_inverted_index.and | 28, 88, 103, 126, 218, 230, 238 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.can | 122, 162 |
| abstract_inverted_index.due | 46 |
| abstract_inverted_index.for | 21, 86 |
| abstract_inverted_index.our | 200 |
| abstract_inverted_index.the | 13, 71, 197, 204 |
| abstract_inverted_index.(CT) | 3 |
| abstract_inverted_index.Flow | 61, 82 |
| abstract_inverted_index.PFGM | 146 |
| abstract_inverted_index.Yet, | 145 |
| abstract_inverted_index.best | 198 |
| abstract_inverted_index.cost | 112 |
| abstract_inverted_index.data | 73, 167 |
| abstract_inverted_index.deep | 26 |
| abstract_inverted_index.each | 138 |
| abstract_inverted_index.flow | 209 |
| abstract_inverted_index.from | 42, 51, 100 |
| abstract_inverted_index.full | 72 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.high | 43 |
| abstract_inverted_index.into | 137 |
| abstract_inverted_index.lack | 37 |
| abstract_inverted_index.that | 222 |
| abstract_inverted_index.they | 35 |
| abstract_inverted_index.this | 76, 202 |
| abstract_inverted_index.with | 189 |
| abstract_inverted_index.(ODE) | 155 |
| abstract_inverted_index.Based | 93 |
| abstract_inverted_index.ResPF | 96, 223 |
| abstract_inverted_index.costs | 45 |
| abstract_inverted_index.dose, | 11 |
| abstract_inverted_index.early | 120 |
| abstract_inverted_index.embed | 134 |
| abstract_inverted_index.first | 205 |
| abstract_inverted_index.fixed | 151 |
| abstract_inverted_index.image | 23, 67 |
| abstract_inverted_index.often | 36 |
| abstract_inverted_index.poses | 18 |
| abstract_inverted_index.shown | 32 |
| abstract_inverted_index.this, | 132 |
| abstract_inverted_index.which | 161 |
| abstract_inverted_index.work, | 77 |
| abstract_inverted_index.Models | 63, 85 |
| abstract_inverted_index.Recent | 54 |
| abstract_inverted_index.enable | 65 |
| abstract_inverted_index.faster | 228 |
| abstract_inverted_index.fusion | 182 |
| abstract_inverted_index.models | 210 |
| abstract_inverted_index.module | 183 |
| abstract_inverted_index.noise. | 53 |
| abstract_inverted_index.random | 52 |
| abstract_inverted_index.reduce | 9, 110 |
| abstract_inverted_index.relies | 148 |
| abstract_inverted_index.sparse | 101 |
| abstract_inverted_index.stages | 121 |
| abstract_inverted_index.steps. | 117 |
| abstract_inverted_index.suffer | 41 |
| abstract_inverted_index.(PFGM), | 64 |
| abstract_inverted_index.(ResPF) | 83 |
| abstract_inverted_index.PFGM++, | 95 |
| abstract_inverted_index.Poisson | 60, 81, 208 |
| abstract_inverted_index.ResNet, | 177 |
| abstract_inverted_index.address | 131 |
| abstract_inverted_index.combine | 186 |
| abstract_inverted_index.degrade | 123 |
| abstract_inverted_index.employs | 104 |
| abstract_inverted_index.fields, | 160 |
| abstract_inverted_index.induced | 157 |
| abstract_inverted_index.initial | 116 |
| abstract_inverted_index.inverse | 16 |
| abstract_inverted_index.methods | 30 |
| abstract_inverted_index.models. | 240 |
| abstract_inverted_index.outputs | 188 |
| abstract_inverted_index.problem | 17 |
| abstract_inverted_index.propose | 79 |
| abstract_inverted_index.quality | 125 |
| abstract_inverted_index.Although | 25 |
| abstract_inverted_index.However, | 118 |
| abstract_inverted_index.Inspired | 175 |
| abstract_inverted_index.Residual | 80 |
| abstract_inverted_index.accurate | 22, 89 |
| abstract_inverted_index.achieves | 224 |
| abstract_inverted_index.advances | 55 |
| abstract_inverted_index.clinical | 219 |
| abstract_inverted_index.compared | 233 |
| abstract_inverted_index.computed | 1 |
| abstract_inverted_index.datasets | 220 |
| abstract_inverted_index.degraded | 173 |
| abstract_inverted_index.ensuring | 140 |
| abstract_inverted_index.equation | 154 |
| abstract_inverted_index.fidelity | 141 |
| abstract_inverted_index.guidance | 99 |
| abstract_inverted_index.learning | 27 |
| abstract_inverted_index.linearly | 185 |
| abstract_inverted_index.modeling | 70 |
| abstract_inverted_index.ordinary | 152 |
| abstract_inverted_index.physical | 38 |
| abstract_inverted_index.quality, | 227 |
| abstract_inverted_index.residual | 181 |
| abstract_inverted_index.results, | 34 |
| abstract_inverted_index.sampling | 49, 111, 147 |
| abstract_inverted_index.skipping | 114, 119 |
| abstract_inverted_index.solution | 7 |
| abstract_inverted_index.starting | 50 |
| abstract_inverted_index.strategy | 107 |
| abstract_inverted_index.stronger | 231 |
| abstract_inverted_index.superior | 225 |
| abstract_inverted_index.unstable | 171 |
| abstract_inverted_index.Extensive | 214 |
| abstract_inverted_index.diffusion | 239 |
| abstract_inverted_index.disrupted | 164 |
| abstract_inverted_index.efficient | 87 |
| abstract_inverted_index.hijacking | 106 |
| abstract_inverted_index.ill-posed | 15 |
| abstract_inverted_index.introduce | 127, 179 |
| abstract_inverted_index.iterative | 48 |
| abstract_inverted_index.modeling, | 58 |
| abstract_inverted_index.practical | 6 |
| abstract_inverted_index.promising | 33 |
| abstract_inverted_index.radiation | 10 |
| abstract_inverted_index.redundant | 115 |
| abstract_inverted_index.resulting | 14, 169 |
| abstract_inverted_index.step-wise | 166 |
| abstract_inverted_index.synthesis | 68 |
| abstract_inverted_index.synthetic | 217 |
| abstract_inverted_index.Generative | 62, 84 |
| abstract_inverted_index.challenges | 20 |
| abstract_inverted_index.generative | 57, 187 |
| abstract_inverted_index.inference, | 229 |
| abstract_inverted_index.integrates | 97 |
| abstract_inverted_index.iteration, | 139 |
| abstract_inverted_index.iterative, | 236 |
| abstract_inverted_index.knowledge, | 201 |
| abstract_inverted_index.preserving | 193 |
| abstract_inverted_index.robustness | 232 |
| abstract_inverted_index.tomography | 2 |
| abstract_inverted_index.trajectory | 156, 194 |
| abstract_inverted_index.Sparse-view | 0 |
| abstract_inverted_index.application | 206 |
| abstract_inverted_index.conditional | 98 |
| abstract_inverted_index.continuity. | 195 |
| abstract_inverted_index.demonstrate | 221 |
| abstract_inverted_index.effectively | 192 |
| abstract_inverted_index.experiments | 215 |
| abstract_inverted_index.significant | 19 |
| abstract_inverted_index.sparse-view | 90, 143, 212 |
| abstract_inverted_index.structures. | 129 |
| abstract_inverted_index.unrealistic | 128 |
| abstract_inverted_index.consistency, | 168 |
| abstract_inverted_index.differential | 153 |
| abstract_inverted_index.measurements | 102 |
| abstract_inverted_index.particularly | 59 |
| abstract_inverted_index.computational | 44 |
| abstract_inverted_index.distribution. | 74 |
| abstract_inverted_index.electrostatic | 159 |
| abstract_inverted_index.high-fidelity | 66 |
| abstract_inverted_index.measurements. | 144 |
| abstract_inverted_index.significantly | 109 |
| abstract_inverted_index.reconstruction | 124, 226 |
| abstract_inverted_index.data-consistent | 190 |
| abstract_inverted_index.diffusion-based | 29 |
| abstract_inverted_index.learning-based, | 237 |
| abstract_inverted_index.reconstruction. | 24, 92 |
| abstract_inverted_index.data-consistency | 136 |
| abstract_inverted_index.interpretability | 39 |
| abstract_inverted_index.reconstructions, | 191 |
| abstract_inverted_index.reconstructions. | 174 |
| abstract_inverted_index.state-of-the-art | 235 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |