Response to Promises and Pitfalls of Deep Kernel Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.21228
This note responds to "Promises and Pitfalls of Deep Kernel Learning" (Ober et al., 2021). The marginal likelihood of a Gaussian process can be compartmentalized into a data fit term and a complexity penalty. Ober et al. (2021) shows that if a kernel can be multiplied by a signal variance coefficient, then reparametrizing and substituting in the maximized value of this parameter sets a reparametrized data fit term to a fixed value. They use this finding to argue that the complexity penalty, a log determinant of the kernel matrix, then dominates in determining the other values of kernel hyperparameters, which can lead to data overcorrelation. By contrast, we show that the reparametrization in fact introduces another data-fit term which influences all other kernel hyperparameters. Thus, a balance between data fit and complexity still plays a significant role in determining kernel hyperparameters.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.21228
- https://arxiv.org/pdf/2509.21228
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414790786
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414790786Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.21228Digital Object Identifier
- Title
-
Response to Promises and Pitfalls of Deep Kernel LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-25Full publication date if available
- Authors
-
Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric P. XingList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.21228Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.21228Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.21228Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414790786 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.21228 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.21228 |
| ids.openalex | https://openalex.org/W4414790786 |
| fwci | |
| type | preprint |
| title | Response to Promises and Pitfalls of Deep Kernel Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13018 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.06880000233650208 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Seismology and Earthquake Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.21228 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.21228 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.21228 |
| locations[1].id | doi:10.48550/arxiv.2509.21228 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.21228 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101694421 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2011-3315 |
| authorships[0].author.display_name | Andrew Gordon Wilson |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wilson, Andrew Gordon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085608858 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6239-5031 |
| authorships[1].author.display_name | Zhiting Hu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hu, Zhiting |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5071983998 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3752-2756 |
| authorships[2].author.display_name | Ruslan Salakhutdinov |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Salakhutdinov, Ruslan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5009547049 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-9158-4201 |
| authorships[3].author.display_name | Eric P. Xing |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xing, Eric P. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.21228 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Response to Promises and Pitfalls of Deep Kernel Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13018 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.06880000233650208 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Seismology and Earthquake Studies |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.21228 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.21228 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.21228 |
| primary_location.id | pmh:oai:arXiv.org:2509.21228 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.21228 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.21228 |
| publication_date | 2025-09-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 26, 31, 41, 47, 63, 69, 82, 125, 134 |
| abstract_inverted_index.By | 105 |
| abstract_inverted_index.be | 23, 44 |
| abstract_inverted_index.by | 46 |
| abstract_inverted_index.et | 12, 35 |
| abstract_inverted_index.if | 40 |
| abstract_inverted_index.in | 55, 91, 112, 137 |
| abstract_inverted_index.of | 7, 18, 59, 85, 96 |
| abstract_inverted_index.to | 3, 68, 76, 102 |
| abstract_inverted_index.we | 107 |
| abstract_inverted_index.The | 15 |
| abstract_inverted_index.al. | 36 |
| abstract_inverted_index.all | 120 |
| abstract_inverted_index.and | 5, 30, 53, 130 |
| abstract_inverted_index.can | 22, 43, 100 |
| abstract_inverted_index.fit | 28, 66, 129 |
| abstract_inverted_index.log | 83 |
| abstract_inverted_index.the | 56, 79, 86, 93, 110 |
| abstract_inverted_index.use | 73 |
| abstract_inverted_index.Deep | 8 |
| abstract_inverted_index.Ober | 34 |
| abstract_inverted_index.They | 72 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.al., | 13 |
| abstract_inverted_index.data | 27, 65, 103, 128 |
| abstract_inverted_index.fact | 113 |
| abstract_inverted_index.into | 25 |
| abstract_inverted_index.lead | 101 |
| abstract_inverted_index.note | 1 |
| abstract_inverted_index.role | 136 |
| abstract_inverted_index.sets | 62 |
| abstract_inverted_index.show | 108 |
| abstract_inverted_index.term | 29, 67, 117 |
| abstract_inverted_index.that | 39, 78, 109 |
| abstract_inverted_index.then | 51, 89 |
| abstract_inverted_index.this | 60, 74 |
| abstract_inverted_index.(Ober | 11 |
| abstract_inverted_index.Thus, | 124 |
| abstract_inverted_index.argue | 77 |
| abstract_inverted_index.fixed | 70 |
| abstract_inverted_index.other | 94, 121 |
| abstract_inverted_index.plays | 133 |
| abstract_inverted_index.shows | 38 |
| abstract_inverted_index.still | 132 |
| abstract_inverted_index.value | 58 |
| abstract_inverted_index.which | 99, 118 |
| abstract_inverted_index.(2021) | 37 |
| abstract_inverted_index.2021). | 14 |
| abstract_inverted_index.Kernel | 9 |
| abstract_inverted_index.kernel | 42, 87, 97, 122, 139 |
| abstract_inverted_index.signal | 48 |
| abstract_inverted_index.value. | 71 |
| abstract_inverted_index.values | 95 |
| abstract_inverted_index.another | 115 |
| abstract_inverted_index.balance | 126 |
| abstract_inverted_index.between | 127 |
| abstract_inverted_index.finding | 75 |
| abstract_inverted_index.matrix, | 88 |
| abstract_inverted_index.process | 21 |
| abstract_inverted_index.Gaussian | 20 |
| abstract_inverted_index.Pitfalls | 6 |
| abstract_inverted_index.data-fit | 116 |
| abstract_inverted_index.marginal | 16 |
| abstract_inverted_index.penalty, | 81 |
| abstract_inverted_index.penalty. | 33 |
| abstract_inverted_index.responds | 2 |
| abstract_inverted_index.variance | 49 |
| abstract_inverted_index."Promises | 4 |
| abstract_inverted_index.Learning" | 10 |
| abstract_inverted_index.contrast, | 106 |
| abstract_inverted_index.dominates | 90 |
| abstract_inverted_index.maximized | 57 |
| abstract_inverted_index.parameter | 61 |
| abstract_inverted_index.complexity | 32, 80, 131 |
| abstract_inverted_index.influences | 119 |
| abstract_inverted_index.introduces | 114 |
| abstract_inverted_index.likelihood | 17 |
| abstract_inverted_index.multiplied | 45 |
| abstract_inverted_index.determinant | 84 |
| abstract_inverted_index.determining | 92, 138 |
| abstract_inverted_index.significant | 135 |
| abstract_inverted_index.coefficient, | 50 |
| abstract_inverted_index.substituting | 54 |
| abstract_inverted_index.reparametrized | 64 |
| abstract_inverted_index.reparametrizing | 52 |
| abstract_inverted_index.hyperparameters, | 98 |
| abstract_inverted_index.hyperparameters. | 123, 140 |
| abstract_inverted_index.overcorrelation. | 104 |
| abstract_inverted_index.compartmentalized | 24 |
| abstract_inverted_index.reparametrization | 111 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |