Restoration of missing ocean color data in high-latitude oceans using neural network model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1080/20964471.2025.2474655
Satellite ocean color remote sensing plays a crucial role in monitoring marine environment at both regional and global scales. However, due to the reduced accuracy of atmospheric correction models under large solar zenith angles (≥70°), publicly available satellite ocean color products lack valid datasets for high-latitude oceans (≥50°S or ≥50°N) during winter. Based on a neural network atmospheric correction model designed for high solar zenith angle observation environments (which used a Rayleigh scattering lookup table generated by PCOART-SA to compute Rayleigh scattering radiance and a neural network model to invert remote sensing reflectance from Rayleigh-corrected radiance), this study has established a monthly ocean color product dataset for high-latitude oceans, named NN-LAT50, covering the period from 2003 to 2020. We validated the accuracy of the ocean color products in NN-LAT50 dataset using multiple in situ datasets, and the results indicated that NN-LAT50 had more reliable and accurate retrievals compared to the NASA released ocean color products in high latitude oceans. Furthermore, during autumn and winter, coverage of the NN-LAT50 dataset far exceeds that of products released by NASA. For instance, during the winter in the Southern Hemisphere, the coverage rates are 3.02% for MODIS/Aqua, 21.59% for VIIRS, and 1.74% for OLCI, while the NN-LAT50 dataset maintains a coverage rate of 38.64%. This study is the first to establish a long-term (2003–2020) ocean color product dataset covering high-latitude oceans during winter, which can significantly enhance the observation of ecological changes in polar and subpolar oceans.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/20964471.2025.2474655
- https://www.tandfonline.com/doi/pdf/10.1080/20964471.2025.2474655?needAccess=true
- OA Status
- gold
- Cited By
- 2
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408291413
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408291413Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/20964471.2025.2474655Digital Object Identifier
- Title
-
Restoration of missing ocean color data in high-latitude oceans using neural network modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-10Full publication date if available
- Authors
-
Hao Li, Xianqiang He, Yan Bai, Difeng Wang, Teng Li, Fang GongList of authors in order
- Landing page
-
https://doi.org/10.1080/20964471.2025.2474655Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/20964471.2025.2474655?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/20964471.2025.2474655?needAccess=trueDirect OA link when available
- Concepts
-
Artificial neural network, Latitude, High latitude, Ocean color, Missing data, Climatology, Geology, Environmental science, Oceanography, Computer science, Artificial intelligence, Geodesy, Satellite, Machine learning, Astronomy, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408291413 |
|---|---|
| doi | https://doi.org/10.1080/20964471.2025.2474655 |
| ids.doi | https://doi.org/10.1080/20964471.2025.2474655 |
| ids.openalex | https://openalex.org/W4408291413 |
| fwci | 18.76037273 |
| type | article |
| title | Restoration of missing ocean color data in high-latitude oceans using neural network model |
| awards[0].id | https://openalex.org/G3337543856 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 42176177 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5563825373 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2023YFC3108101 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 2 |
| biblio.volume | 9 |
| biblio.last_page | 355 |
| biblio.first_page | 336 |
| topics[0].id | https://openalex.org/T10032 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9814000129699707 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Marine and coastal ecosystems |
| topics[1].id | https://openalex.org/T10255 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9603999853134155 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Oceanographic and Atmospheric Processes |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.925000011920929 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 835 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1024 |
| apc_paid.value | 835 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1024 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.664013683795929 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C122523270 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6006997227668762 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q34027 |
| concepts[1].display_name | Latitude |
| concepts[2].id | https://openalex.org/C2993248092 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5876230597496033 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q60670 |
| concepts[2].display_name | High latitude |
| concepts[3].id | https://openalex.org/C2776939893 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5177892446517944 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7076134 |
| concepts[3].display_name | Ocean color |
| concepts[4].id | https://openalex.org/C9357733 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4644691050052643 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[4].display_name | Missing data |
| concepts[5].id | https://openalex.org/C49204034 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43318116664886475 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[5].display_name | Climatology |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41915959119796753 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C39432304 |
| concepts[7].level | 0 |
| concepts[7].score | 0.40819796919822693 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[7].display_name | Environmental science |
| concepts[8].id | https://openalex.org/C111368507 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34544268250465393 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[8].display_name | Oceanography |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.25872063636779785 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24889880418777466 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.19175031781196594 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| concepts[12].id | https://openalex.org/C19269812 |
| concepts[12].level | 2 |
| concepts[12].score | 0.1258995234966278 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[12].display_name | Satellite |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09147396683692932 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C1276947 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08603999018669128 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[14].display_name | Astronomy |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.664013683795929 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/latitude |
| keywords[1].score | 0.6006997227668762 |
| keywords[1].display_name | Latitude |
| keywords[2].id | https://openalex.org/keywords/high-latitude |
| keywords[2].score | 0.5876230597496033 |
| keywords[2].display_name | High latitude |
| keywords[3].id | https://openalex.org/keywords/ocean-color |
| keywords[3].score | 0.5177892446517944 |
| keywords[3].display_name | Ocean color |
| keywords[4].id | https://openalex.org/keywords/missing-data |
| keywords[4].score | 0.4644691050052643 |
| keywords[4].display_name | Missing data |
| keywords[5].id | https://openalex.org/keywords/climatology |
| keywords[5].score | 0.43318116664886475 |
| keywords[5].display_name | Climatology |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.41915959119796753 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/environmental-science |
| keywords[7].score | 0.40819796919822693 |
| keywords[7].display_name | Environmental science |
| keywords[8].id | https://openalex.org/keywords/oceanography |
| keywords[8].score | 0.34544268250465393 |
| keywords[8].display_name | Oceanography |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.25872063636779785 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.24889880418777466 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/geodesy |
| keywords[11].score | 0.19175031781196594 |
| keywords[11].display_name | Geodesy |
| keywords[12].id | https://openalex.org/keywords/satellite |
| keywords[12].score | 0.1258995234966278 |
| keywords[12].display_name | Satellite |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.09147396683692932 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/astronomy |
| keywords[14].score | 0.08603999018669128 |
| keywords[14].display_name | Astronomy |
| language | en |
| locations[0].id | doi:10.1080/20964471.2025.2474655 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210215966 |
| locations[0].source.issn | 2096-4471, 2574-5417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-4471 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Big Earth Data |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/20964471.2025.2474655?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Big Earth Data |
| locations[0].landing_page_url | https://doi.org/10.1080/20964471.2025.2474655 |
| locations[1].id | pmh:oai:doaj.org/article:d82c4032b3eb41f683e5c8fc51457581 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Big Earth Data, Vol 9, Iss 2, Pp 336-355 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d82c4032b3eb41f683e5c8fc51457581 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100348645 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8414-8031 |
| authorships[0].author.display_name | Hao Li |
| authorships[0].affiliations[0].raw_affiliation_string | Donghai Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Donghai Laboratory |
| authorships[1].author.id | https://openalex.org/A5037623697 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7474-6778 |
| authorships[1].author.display_name | Xianqiang He |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Ministry of Natural Resources |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[1].raw_affiliation_string | Shanghai Jiao Tong University |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xianqiang He |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ministry of Natural Resources, Shanghai Jiao Tong University |
| authorships[2].author.id | https://openalex.org/A5051755337 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3345-1495 |
| authorships[2].author.display_name | Yan Bai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University |
| authorships[2].affiliations[1].raw_affiliation_string | Ministry of Natural Resources |
| authorships[2].institutions[0].id | https://openalex.org/I183067930 |
| authorships[2].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yan Bai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ministry of Natural Resources, Shanghai Jiao Tong University |
| authorships[3].author.id | https://openalex.org/A5053182622 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7747-3082 |
| authorships[3].author.display_name | Difeng Wang |
| authorships[3].affiliations[0].raw_affiliation_string | Ministry of Natural Resources |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Difeng Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Ministry of Natural Resources |
| authorships[4].author.id | https://openalex.org/A5100416750 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0111-0108 |
| authorships[4].author.display_name | Teng Li |
| authorships[4].affiliations[0].raw_affiliation_string | Ministry of Natural Resources |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Teng Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ministry of Natural Resources |
| authorships[5].author.id | https://openalex.org/A5002577814 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Fang Gong |
| authorships[5].affiliations[0].raw_affiliation_string | Ministry of Natural Resources |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Fang Gong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Ministry of Natural Resources |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/20964471.2025.2474655?needAccess=true |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Restoration of missing ocean color data in high-latitude oceans using neural network model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10032 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9814000129699707 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Marine and coastal ecosystems |
| related_works | https://openalex.org/W2080982322, https://openalex.org/W2091200369, https://openalex.org/W2380512220, https://openalex.org/W2366604632, https://openalex.org/W1997226131, https://openalex.org/W2116809115, https://openalex.org/W2038646710, https://openalex.org/W4295065832, https://openalex.org/W2062800521, https://openalex.org/W291118911 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/20964471.2025.2474655 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210215966 |
| best_oa_location.source.issn | 2096-4471, 2574-5417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-4471 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Big Earth Data |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/20964471.2025.2474655?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Big Earth Data |
| best_oa_location.landing_page_url | https://doi.org/10.1080/20964471.2025.2474655 |
| primary_location.id | doi:10.1080/20964471.2025.2474655 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210215966 |
| primary_location.source.issn | 2096-4471, 2574-5417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-4471 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Big Earth Data |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/20964471.2025.2474655?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Big Earth Data |
| primary_location.landing_page_url | https://doi.org/10.1080/20964471.2025.2474655 |
| publication_date | 2025-03-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1974104711, https://openalex.org/W2031265755, https://openalex.org/W2799524033, https://openalex.org/W2088665921, https://openalex.org/W3197446796, https://openalex.org/W4319000720, https://openalex.org/W2005639538, https://openalex.org/W2991410195, https://openalex.org/W2791712864, https://openalex.org/W2524817499, https://openalex.org/W2136758825, https://openalex.org/W4379389658, https://openalex.org/W2782394885, https://openalex.org/W2571174014, https://openalex.org/W4312754018, https://openalex.org/W3047155882, https://openalex.org/W4308975285, https://openalex.org/W4390881498, https://openalex.org/W4403972943, https://openalex.org/W4225596646, https://openalex.org/W2039800210, https://openalex.org/W2108592251, https://openalex.org/W2133910563, https://openalex.org/W4291208834, https://openalex.org/W4226516479, https://openalex.org/W2062386317, https://openalex.org/W4312117167, https://openalex.org/W2915081206, https://openalex.org/W2292246395, https://openalex.org/W4321494928, https://openalex.org/W4390976723, https://openalex.org/W4403054434, https://openalex.org/W4389815343, https://openalex.org/W4318346444, https://openalex.org/W4319161724, https://openalex.org/W4396785506, https://openalex.org/W4303437715 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 6, 54, 70, 84, 100, 205, 217 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.at | 13 |
| abstract_inverted_index.by | 76, 175 |
| abstract_inverted_index.in | 9, 127, 132, 155, 182, 238 |
| abstract_inverted_index.is | 212 |
| abstract_inverted_index.of | 25, 122, 165, 172, 208, 235 |
| abstract_inverted_index.on | 53 |
| abstract_inverted_index.or | 48 |
| abstract_inverted_index.to | 21, 78, 88, 116, 148, 215 |
| abstract_inverted_index.For | 177 |
| abstract_inverted_index.and | 16, 83, 135, 144, 162, 196, 240 |
| abstract_inverted_index.are | 189 |
| abstract_inverted_index.can | 230 |
| abstract_inverted_index.due | 20 |
| abstract_inverted_index.far | 169 |
| abstract_inverted_index.for | 44, 61, 106, 191, 194, 198 |
| abstract_inverted_index.had | 141 |
| abstract_inverted_index.has | 98 |
| abstract_inverted_index.the | 22, 112, 120, 123, 136, 149, 166, 180, 183, 186, 201, 213, 233 |
| abstract_inverted_index.2003 | 115 |
| abstract_inverted_index.NASA | 150 |
| abstract_inverted_index.This | 210 |
| abstract_inverted_index.both | 14 |
| abstract_inverted_index.from | 93, 114 |
| abstract_inverted_index.high | 62, 156 |
| abstract_inverted_index.lack | 41 |
| abstract_inverted_index.more | 142 |
| abstract_inverted_index.rate | 207 |
| abstract_inverted_index.role | 8 |
| abstract_inverted_index.situ | 133 |
| abstract_inverted_index.that | 139, 171 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.used | 69 |
| abstract_inverted_index.1.74% | 197 |
| abstract_inverted_index.2020. | 117 |
| abstract_inverted_index.3.02% | 190 |
| abstract_inverted_index.Based | 52 |
| abstract_inverted_index.NASA. | 176 |
| abstract_inverted_index.OLCI, | 199 |
| abstract_inverted_index.angle | 65 |
| abstract_inverted_index.color | 2, 39, 103, 125, 153, 221 |
| abstract_inverted_index.first | 214 |
| abstract_inverted_index.large | 30 |
| abstract_inverted_index.model | 59, 87 |
| abstract_inverted_index.named | 109 |
| abstract_inverted_index.ocean | 1, 38, 102, 124, 152, 220 |
| abstract_inverted_index.plays | 5 |
| abstract_inverted_index.polar | 239 |
| abstract_inverted_index.rates | 188 |
| abstract_inverted_index.solar | 31, 63 |
| abstract_inverted_index.study | 97, 211 |
| abstract_inverted_index.table | 74 |
| abstract_inverted_index.under | 29 |
| abstract_inverted_index.using | 130 |
| abstract_inverted_index.valid | 42 |
| abstract_inverted_index.which | 229 |
| abstract_inverted_index.while | 200 |
| abstract_inverted_index.(which | 68 |
| abstract_inverted_index.21.59% | 193 |
| abstract_inverted_index.VIIRS, | 195 |
| abstract_inverted_index.angles | 33 |
| abstract_inverted_index.autumn | 161 |
| abstract_inverted_index.during | 50, 160, 179, 227 |
| abstract_inverted_index.global | 17 |
| abstract_inverted_index.invert | 89 |
| abstract_inverted_index.lookup | 73 |
| abstract_inverted_index.marine | 11 |
| abstract_inverted_index.models | 28 |
| abstract_inverted_index.neural | 55, 85 |
| abstract_inverted_index.oceans | 46, 226 |
| abstract_inverted_index.period | 113 |
| abstract_inverted_index.remote | 3, 90 |
| abstract_inverted_index.winter | 181 |
| abstract_inverted_index.zenith | 32, 64 |
| abstract_inverted_index.38.64%. | 209 |
| abstract_inverted_index.changes | 237 |
| abstract_inverted_index.compute | 79 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.dataset | 105, 129, 168, 203, 223 |
| abstract_inverted_index.enhance | 232 |
| abstract_inverted_index.exceeds | 170 |
| abstract_inverted_index.monthly | 101 |
| abstract_inverted_index.network | 56, 86 |
| abstract_inverted_index.oceans, | 108 |
| abstract_inverted_index.oceans. | 158, 242 |
| abstract_inverted_index.product | 104, 222 |
| abstract_inverted_index.reduced | 23 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.scales. | 18 |
| abstract_inverted_index.sensing | 4, 91 |
| abstract_inverted_index.winter, | 163, 228 |
| abstract_inverted_index.winter. | 51 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.NN-LAT50 | 128, 140, 167, 202 |
| abstract_inverted_index.Rayleigh | 71, 80 |
| abstract_inverted_index.Southern | 184 |
| abstract_inverted_index.accuracy | 24, 121 |
| abstract_inverted_index.accurate | 145 |
| abstract_inverted_index.compared | 147 |
| abstract_inverted_index.coverage | 164, 187, 206 |
| abstract_inverted_index.covering | 111, 224 |
| abstract_inverted_index.datasets | 43 |
| abstract_inverted_index.designed | 60 |
| abstract_inverted_index.latitude | 157 |
| abstract_inverted_index.multiple | 131 |
| abstract_inverted_index.products | 40, 126, 154, 173 |
| abstract_inverted_index.publicly | 35 |
| abstract_inverted_index.radiance | 82 |
| abstract_inverted_index.regional | 15 |
| abstract_inverted_index.released | 151, 174 |
| abstract_inverted_index.reliable | 143 |
| abstract_inverted_index.subpolar | 241 |
| abstract_inverted_index.(≥50°S | 47 |
| abstract_inverted_index.NN-LAT50, | 110 |
| abstract_inverted_index.PCOART-SA | 77 |
| abstract_inverted_index.Satellite | 0 |
| abstract_inverted_index.available | 36 |
| abstract_inverted_index.datasets, | 134 |
| abstract_inverted_index.establish | 216 |
| abstract_inverted_index.generated | 75 |
| abstract_inverted_index.indicated | 138 |
| abstract_inverted_index.instance, | 178 |
| abstract_inverted_index.long-term | 218 |
| abstract_inverted_index.maintains | 204 |
| abstract_inverted_index.satellite | 37 |
| abstract_inverted_index.validated | 119 |
| abstract_inverted_index.≥50°N) | 49 |
| abstract_inverted_index.(≥70°), | 34 |
| abstract_inverted_index.correction | 27, 58 |
| abstract_inverted_index.ecological | 236 |
| abstract_inverted_index.monitoring | 10 |
| abstract_inverted_index.radiance), | 95 |
| abstract_inverted_index.retrievals | 146 |
| abstract_inverted_index.scattering | 72, 81 |
| abstract_inverted_index.Hemisphere, | 185 |
| abstract_inverted_index.MODIS/Aqua, | 192 |
| abstract_inverted_index.atmospheric | 26, 57 |
| abstract_inverted_index.environment | 12 |
| abstract_inverted_index.established | 99 |
| abstract_inverted_index.observation | 66, 234 |
| abstract_inverted_index.reflectance | 92 |
| abstract_inverted_index.Furthermore, | 159 |
| abstract_inverted_index.environments | 67 |
| abstract_inverted_index.(2003–2020) | 219 |
| abstract_inverted_index.high-latitude | 45, 107, 225 |
| abstract_inverted_index.significantly | 231 |
| abstract_inverted_index.Rayleigh-corrected | 94 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.94286908 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |