Rethinking Rotation-Invariant Recognition of Fine-grained Shapes from the Perspective of Contour Points Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.10992
Rotation-invariant recognition of shapes is a common challenge in computer vision. Recent approaches have significantly improved the accuracy of rotation-invariant recognition by encoding the rotational invariance of shapes as hand-crafted image features and introducing deep neural networks. However, the methods based on pixels have too much redundant information, and the critical geometric information is prone to early leakage, resulting in weak rotation-invariant recognition of fine-grained shapes. In this paper, we reconsider the shape recognition problem from the perspective of contour points rather than pixels. We propose an anti-noise rotation-invariant convolution module based on contour geometric aware for fine-grained shape recognition. The module divides the shape contour into multiple local geometric regions(LGA), where we implement finer-grained rotation-invariant coding in terms of point topological relations. We provide a deep network composed of five such cascaded modules for classification and retrieval experiments. The results show that our method exhibits excellent performance in rotation-invariant recognition of fine-grained shapes. In addition, we demonstrate that our method is robust to contour noise and the rotation centers. The source code is available at https://github.com/zhenguonie/ANRICN_CGA.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.10992
- https://arxiv.org/pdf/2503.10992
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417281685
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417281685Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.10992Digital Object Identifier
- Title
-
Rethinking Rotation-Invariant Recognition of Fine-grained Shapes from the Perspective of Contour PointsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-14Full publication date if available
- Authors
-
Yanjie Xu, Handing Xu, Tianmu Wang, Yaguan Li, Yunzhi Chen, Zhenguo NieList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.10992Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.10992Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.10992Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417281685 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.10992 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.10992 |
| ids.openalex | https://openalex.org/W4417281685 |
| fwci | |
| type | preprint |
| title | Rethinking Rotation-Invariant Recognition of Fine-grained Shapes from the Perspective of Contour Points |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.10992 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.10992 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.10992 |
| locations[1].id | doi:10.48550/arxiv.2503.10992 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.10992 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101044676 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5327-5022 |
| authorships[0].author.display_name | Yanjie Xu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xu, Yanjie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5019751541 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2547-4048 |
| authorships[1].author.display_name | Handing Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Handing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5000164834 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tianmu Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Tianmu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021038504 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yaguan Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Yaguan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101592930 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5917-3836 |
| authorships[4].author.display_name | Yunzhi Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Yunzhi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5068855808 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1990-3037 |
| authorships[5].author.display_name | Zhenguo Nie |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nie, Zhenguo |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.10992 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Rethinking Rotation-Invariant Recognition of Fine-grained Shapes from the Perspective of Contour Points |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-13T23:11:00.310470 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.10992 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.10992 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.10992 |
| primary_location.id | pmh:oai:arXiv.org:2503.10992 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.10992 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.10992 |
| publication_date | 2025-03-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 125 |
| abstract_inverted_index.In | 66, 154 |
| abstract_inverted_index.We | 84, 123 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.at | 175 |
| abstract_inverted_index.by | 21 |
| abstract_inverted_index.in | 8, 59, 117, 148 |
| abstract_inverted_index.is | 4, 53, 161, 173 |
| abstract_inverted_index.of | 2, 18, 26, 63, 78, 119, 129, 151 |
| abstract_inverted_index.on | 41, 92 |
| abstract_inverted_index.to | 55, 163 |
| abstract_inverted_index.we | 69, 112, 156 |
| abstract_inverted_index.The | 100, 139, 170 |
| abstract_inverted_index.and | 32, 48, 136, 166 |
| abstract_inverted_index.for | 96, 134 |
| abstract_inverted_index.our | 143, 159 |
| abstract_inverted_index.the | 16, 23, 38, 49, 71, 76, 103, 167 |
| abstract_inverted_index.too | 44 |
| abstract_inverted_index.code | 172 |
| abstract_inverted_index.deep | 34, 126 |
| abstract_inverted_index.five | 130 |
| abstract_inverted_index.from | 75 |
| abstract_inverted_index.have | 13, 43 |
| abstract_inverted_index.into | 106 |
| abstract_inverted_index.much | 45 |
| abstract_inverted_index.show | 141 |
| abstract_inverted_index.such | 131 |
| abstract_inverted_index.than | 82 |
| abstract_inverted_index.that | 142, 158 |
| abstract_inverted_index.this | 67 |
| abstract_inverted_index.weak | 60 |
| abstract_inverted_index.aware | 95 |
| abstract_inverted_index.based | 40, 91 |
| abstract_inverted_index.early | 56 |
| abstract_inverted_index.image | 30 |
| abstract_inverted_index.local | 108 |
| abstract_inverted_index.noise | 165 |
| abstract_inverted_index.point | 120 |
| abstract_inverted_index.prone | 54 |
| abstract_inverted_index.shape | 72, 98, 104 |
| abstract_inverted_index.terms | 118 |
| abstract_inverted_index.where | 111 |
| abstract_inverted_index.Recent | 11 |
| abstract_inverted_index.coding | 116 |
| abstract_inverted_index.common | 6 |
| abstract_inverted_index.method | 144, 160 |
| abstract_inverted_index.module | 90, 101 |
| abstract_inverted_index.neural | 35 |
| abstract_inverted_index.paper, | 68 |
| abstract_inverted_index.pixels | 42 |
| abstract_inverted_index.points | 80 |
| abstract_inverted_index.rather | 81 |
| abstract_inverted_index.robust | 162 |
| abstract_inverted_index.shapes | 3, 27 |
| abstract_inverted_index.source | 171 |
| abstract_inverted_index.contour | 79, 93, 105, 164 |
| abstract_inverted_index.divides | 102 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.modules | 133 |
| abstract_inverted_index.network | 127 |
| abstract_inverted_index.pixels. | 83 |
| abstract_inverted_index.problem | 74 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.provide | 124 |
| abstract_inverted_index.results | 140 |
| abstract_inverted_index.shapes. | 65, 153 |
| abstract_inverted_index.vision. | 10 |
| abstract_inverted_index.However, | 37 |
| abstract_inverted_index.accuracy | 17 |
| abstract_inverted_index.cascaded | 132 |
| abstract_inverted_index.centers. | 169 |
| abstract_inverted_index.composed | 128 |
| abstract_inverted_index.computer | 9 |
| abstract_inverted_index.critical | 50 |
| abstract_inverted_index.encoding | 22 |
| abstract_inverted_index.exhibits | 145 |
| abstract_inverted_index.features | 31 |
| abstract_inverted_index.improved | 15 |
| abstract_inverted_index.leakage, | 57 |
| abstract_inverted_index.multiple | 107 |
| abstract_inverted_index.rotation | 168 |
| abstract_inverted_index.addition, | 155 |
| abstract_inverted_index.available | 174 |
| abstract_inverted_index.challenge | 7 |
| abstract_inverted_index.excellent | 146 |
| abstract_inverted_index.geometric | 51, 94, 109 |
| abstract_inverted_index.implement | 113 |
| abstract_inverted_index.networks. | 36 |
| abstract_inverted_index.redundant | 46 |
| abstract_inverted_index.resulting | 58 |
| abstract_inverted_index.retrieval | 137 |
| abstract_inverted_index.anti-noise | 87 |
| abstract_inverted_index.approaches | 12 |
| abstract_inverted_index.invariance | 25 |
| abstract_inverted_index.reconsider | 70 |
| abstract_inverted_index.relations. | 122 |
| abstract_inverted_index.rotational | 24 |
| abstract_inverted_index.convolution | 89 |
| abstract_inverted_index.demonstrate | 157 |
| abstract_inverted_index.information | 52 |
| abstract_inverted_index.introducing | 33 |
| abstract_inverted_index.performance | 147 |
| abstract_inverted_index.perspective | 77 |
| abstract_inverted_index.recognition | 1, 20, 62, 73, 150 |
| abstract_inverted_index.topological | 121 |
| abstract_inverted_index.experiments. | 138 |
| abstract_inverted_index.fine-grained | 64, 97, 152 |
| abstract_inverted_index.hand-crafted | 29 |
| abstract_inverted_index.information, | 47 |
| abstract_inverted_index.recognition. | 99 |
| abstract_inverted_index.finer-grained | 114 |
| abstract_inverted_index.regions(LGA), | 110 |
| abstract_inverted_index.significantly | 14 |
| abstract_inverted_index.classification | 135 |
| abstract_inverted_index.Rotation-invariant | 0 |
| abstract_inverted_index.rotation-invariant | 19, 61, 88, 115, 149 |
| abstract_inverted_index.https://github.com/zhenguonie/ANRICN_CGA. | 176 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |