Rethinking Table Parsing using Graph Neural Networks Article Swipe
Document structure analysis, such as zone segmentation and table parsing, is a complex problem in document processing and is an active area of research. The recent success of deep learning in solving various computer vision and machine learning problems has not been reflected in document structure analysis since conventional neural networks are not well suited to the input structure of the problem. In this paper, we propose an architecture based on graph networks as a better alternative to standard neural networks for table parsing. We argue that graph networks are a more natural choice for these problems, and explore two gradient-based graph neural networks. Our proposed architecture combines the benefits of convolutional neural networks for visual feature extraction and graph networks for dealing with the problem structure. We empirically demonstrate that our method outperforms the baseline by a significant margin. In addition, we identify the lack of large scale datasets as a major hindrance for deep learning research for structure analysis, and present a new large scale synthetic dataset for the problem of table parsing. Finally, we open-source our implementation of dataset generation and the training framework of our graph networks to promote reproducible research in this direction.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/abs/1905.13391v1
- OA Status
- green
- Cited By
- 12
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2947372801
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2947372801Canonical identifier for this work in OpenAlex
- Title
-
Rethinking Table Parsing using Graph Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-05-31Full publication date if available
- Authors
-
Shah Rukh Qasim, Hassan Mahmood, Faisal ShafaitList of authors in order
- Landing page
-
https://arxiv.org/abs/1905.13391v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/1905.13391v1Direct OA link when available
- Concepts
-
Computer science, Parsing, Artificial intelligence, Graph, Margin (machine learning), Convolutional neural network, Artificial neural network, Deep learning, Machine learning, Table (database), Segmentation, Theoretical computer science, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 2, 2021: 4, 2020: 6Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2947372801 |
|---|---|
| doi | |
| ids.mag | 2947372801 |
| ids.openalex | https://openalex.org/W2947372801 |
| fwci | |
| type | preprint |
| title | Rethinking Table Parsing using Graph Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9869999885559082 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8326588869094849 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C186644900 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7559428811073303 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[1].display_name | Parsing |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6950694918632507 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5784295797348022 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C774472 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5620610117912292 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[4].display_name | Margin (machine learning) |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5406205058097839 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5006439685821533 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5006346702575684 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.498258113861084 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C45235069 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4819878935813904 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q278425 |
| concepts[9].display_name | Table (database) |
| concepts[10].id | https://openalex.org/C89600930 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4279709756374359 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[10].display_name | Segmentation |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33929315209388733 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.27251583337783813 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8326588869094849 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/parsing |
| keywords[1].score | 0.7559428811073303 |
| keywords[1].display_name | Parsing |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6950694918632507 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.5784295797348022 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/margin |
| keywords[4].score | 0.5620610117912292 |
| keywords[4].display_name | Margin (machine learning) |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.5406205058097839 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5006439685821533 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5006346702575684 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.498258113861084 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/table |
| keywords[9].score | 0.4819878935813904 |
| keywords[9].display_name | Table (database) |
| keywords[10].id | https://openalex.org/keywords/segmentation |
| keywords[10].score | 0.4279709756374359 |
| keywords[10].display_name | Segmentation |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.33929315209388733 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.27251583337783813 |
| keywords[12].display_name | Data mining |
| language | en |
| locations[0].id | mag:2947372801 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/abs/1905.13391v1 |
| authorships[0].author.id | https://openalex.org/A5086190596 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4264-9724 |
| authorships[0].author.display_name | Shah Rukh Qasim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shah Rukh Qasim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101611089 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9950-0544 |
| authorships[1].author.display_name | Hassan Mahmood |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hassan Mahmood |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003304863 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0922-0566 |
| authorships[2].author.display_name | Faisal Shafait |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Faisal Shafait |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/1905.13391v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Rethinking Table Parsing using Graph Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W3003206728, https://openalex.org/W2964346820, https://openalex.org/W2022351003, https://openalex.org/W2001642682, https://openalex.org/W2919502278, https://openalex.org/W2795424778, https://openalex.org/W2613718673, https://openalex.org/W2444353601, https://openalex.org/W2982363512, https://openalex.org/W3193581481, https://openalex.org/W3163325638, https://openalex.org/W2550241572, https://openalex.org/W2942259124, https://openalex.org/W3207641408, https://openalex.org/W3093151423, https://openalex.org/W3213097325, https://openalex.org/W3127337436, https://openalex.org/W2976462669, https://openalex.org/W2972135640, https://openalex.org/W3204141993 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | mag:2947372801 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/1905.13391v1 |
| primary_location.id | mag:2947372801 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/abs/1905.13391v1 |
| publication_date | 2019-05-31 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 74, 90, 137, 151, 163 |
| abstract_inverted_index.In | 62, 140 |
| abstract_inverted_index.We | 84, 127 |
| abstract_inverted_index.an | 19, 67 |
| abstract_inverted_index.as | 4, 73, 150 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.in | 14, 30, 43, 195 |
| abstract_inverted_index.is | 10, 18 |
| abstract_inverted_index.of | 22, 27, 59, 110, 146, 172, 180, 187 |
| abstract_inverted_index.on | 70 |
| abstract_inverted_index.to | 55, 77, 191 |
| abstract_inverted_index.we | 65, 142, 176 |
| abstract_inverted_index.Our | 104 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.and | 7, 17, 35, 97, 118, 161, 183 |
| abstract_inverted_index.are | 51, 89 |
| abstract_inverted_index.for | 81, 94, 114, 121, 154, 158, 169 |
| abstract_inverted_index.has | 39 |
| abstract_inverted_index.new | 164 |
| abstract_inverted_index.not | 40, 52 |
| abstract_inverted_index.our | 131, 178, 188 |
| abstract_inverted_index.the | 56, 60, 108, 124, 134, 144, 170, 184 |
| abstract_inverted_index.two | 99 |
| abstract_inverted_index.area | 21 |
| abstract_inverted_index.been | 41 |
| abstract_inverted_index.deep | 28, 155 |
| abstract_inverted_index.lack | 145 |
| abstract_inverted_index.more | 91 |
| abstract_inverted_index.such | 3 |
| abstract_inverted_index.that | 86, 130 |
| abstract_inverted_index.this | 63, 196 |
| abstract_inverted_index.well | 53 |
| abstract_inverted_index.with | 123 |
| abstract_inverted_index.zone | 5 |
| abstract_inverted_index.argue | 85 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.graph | 71, 87, 101, 119, 189 |
| abstract_inverted_index.input | 57 |
| abstract_inverted_index.large | 147, 165 |
| abstract_inverted_index.major | 152 |
| abstract_inverted_index.scale | 148, 166 |
| abstract_inverted_index.since | 47 |
| abstract_inverted_index.table | 8, 82, 173 |
| abstract_inverted_index.these | 95 |
| abstract_inverted_index.active | 20 |
| abstract_inverted_index.better | 75 |
| abstract_inverted_index.choice | 93 |
| abstract_inverted_index.method | 132 |
| abstract_inverted_index.neural | 49, 79, 102, 112 |
| abstract_inverted_index.paper, | 64 |
| abstract_inverted_index.recent | 25 |
| abstract_inverted_index.suited | 54 |
| abstract_inverted_index.vision | 34 |
| abstract_inverted_index.visual | 115 |
| abstract_inverted_index.complex | 12 |
| abstract_inverted_index.dataset | 168, 181 |
| abstract_inverted_index.dealing | 122 |
| abstract_inverted_index.explore | 98 |
| abstract_inverted_index.feature | 116 |
| abstract_inverted_index.machine | 36 |
| abstract_inverted_index.margin. | 139 |
| abstract_inverted_index.natural | 92 |
| abstract_inverted_index.present | 162 |
| abstract_inverted_index.problem | 13, 125, 171 |
| abstract_inverted_index.promote | 192 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.solving | 31 |
| abstract_inverted_index.success | 26 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.Document | 0 |
| abstract_inverted_index.Finally, | 175 |
| abstract_inverted_index.analysis | 46 |
| abstract_inverted_index.baseline | 135 |
| abstract_inverted_index.benefits | 109 |
| abstract_inverted_index.combines | 107 |
| abstract_inverted_index.computer | 33 |
| abstract_inverted_index.datasets | 149 |
| abstract_inverted_index.document | 15, 44 |
| abstract_inverted_index.identify | 143 |
| abstract_inverted_index.learning | 29, 37, 156 |
| abstract_inverted_index.networks | 50, 72, 80, 88, 113, 120, 190 |
| abstract_inverted_index.parsing, | 9 |
| abstract_inverted_index.parsing. | 83, 174 |
| abstract_inverted_index.problem. | 61 |
| abstract_inverted_index.problems | 38 |
| abstract_inverted_index.proposed | 105 |
| abstract_inverted_index.research | 157, 194 |
| abstract_inverted_index.standard | 78 |
| abstract_inverted_index.training | 185 |
| abstract_inverted_index.addition, | 141 |
| abstract_inverted_index.analysis, | 2, 160 |
| abstract_inverted_index.framework | 186 |
| abstract_inverted_index.hindrance | 153 |
| abstract_inverted_index.networks. | 103 |
| abstract_inverted_index.problems, | 96 |
| abstract_inverted_index.reflected | 42 |
| abstract_inverted_index.research. | 23 |
| abstract_inverted_index.structure | 1, 45, 58, 159 |
| abstract_inverted_index.synthetic | 167 |
| abstract_inverted_index.direction. | 197 |
| abstract_inverted_index.extraction | 117 |
| abstract_inverted_index.generation | 182 |
| abstract_inverted_index.processing | 16 |
| abstract_inverted_index.structure. | 126 |
| abstract_inverted_index.alternative | 76 |
| abstract_inverted_index.demonstrate | 129 |
| abstract_inverted_index.empirically | 128 |
| abstract_inverted_index.open-source | 177 |
| abstract_inverted_index.outperforms | 133 |
| abstract_inverted_index.significant | 138 |
| abstract_inverted_index.architecture | 68, 106 |
| abstract_inverted_index.conventional | 48 |
| abstract_inverted_index.reproducible | 193 |
| abstract_inverted_index.segmentation | 6 |
| abstract_inverted_index.convolutional | 111 |
| abstract_inverted_index.gradient-based | 100 |
| abstract_inverted_index.implementation | 179 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |