Rethinking the association between green space and crime using spatial quantile regression modelling: Do vegetation type, crime type, and crime rates matter? Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.ufug.2024.128523
UN Sustainable Development Goals (e.g., Goal 16) have highlighted the importance of using policy tools (e.g., through urban planning) to prevent crimes. Existing evidence of the association between green space and crime is mixed. Some studies indicate that the inconsistencies may be due to the variance in types of vegetation and the rates of crime reported across regions and countries. This study aims to assess the conditional association between green space and crime by considering the influence of vegetation type (e.g., grassland, woodland), crime type (e.g., violence, theft) and rates of crime reported in Northern Ireland (NI), United Kingdom. Crime data were obtained from the Police Service NI and green space was determined by Land Cover Map at the Super Output Area (SOA) level provided by the UK Centre for Ecology & Hydrology. Spatial quantile regressions were used to model the adjusted association between green space and crime across areas with different rates of crime. The results showed that more grassland may be associated with lower crime rates, but only in areas with relatively low crime rates. More woodland may also be associated with lower crime rates, but only for areas with relatively high crime rates. Also, we found that associations between green space and crime varied by type of crime. In summary, policymakers and planners should consider green space as a potential crime reduction intervention, factoring in the heterogeneous effects of vegetation type, crime type and crime rate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ufug.2024.128523
- OA Status
- hybrid
- Cited By
- 10
- References
- 104
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402667303
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402667303Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ufug.2024.128523Digital Object Identifier
- Title
-
Rethinking the association between green space and crime using spatial quantile regression modelling: Do vegetation type, crime type, and crime rates matter?Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-20Full publication date if available
- Authors
-
Ruoyu Wang, Claire Cleland, Ruth Weir, Sally McManus, Agustina Martire, George Grekousis, Dominic Bryan, Ruth F. HunterList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ufug.2024.128523Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ufug.2024.128523Direct OA link when available
- Concepts
-
Vegetation (pathology), Quantile regression, Geography, Space (punctuation), Association (psychology), Quantile, Vegetation type, Type (biology), Vegetation types, Econometrics, Statistics, Mathematics, Ecology, Computer science, Psychology, Biology, Habitat, Psychotherapist, Medicine, Operating system, Pathology, GrasslandTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
104Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402667303 |
|---|---|
| doi | https://doi.org/10.1016/j.ufug.2024.128523 |
| ids.doi | https://doi.org/10.1016/j.ufug.2024.128523 |
| ids.openalex | https://openalex.org/W4402667303 |
| fwci | 5.73784109 |
| type | article |
| title | Rethinking the association between green space and crime using spatial quantile regression modelling: Do vegetation type, crime type, and crime rates matter? |
| biblio.issue | |
| biblio.volume | 101 |
| biblio.last_page | 128523 |
| biblio.first_page | 128523 |
| topics[0].id | https://openalex.org/T10226 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Land Use and Ecosystem Services |
| topics[1].id | https://openalex.org/T10199 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Wildlife Ecology and Conservation |
| topics[2].id | https://openalex.org/T10692 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9785000085830688 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2307 |
| topics[2].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[2].display_name | Urban Green Space and Health |
| is_xpac | False |
| apc_list.value | 3440 |
| apc_list.currency | USD |
| apc_list.value_usd | 3440 |
| apc_paid.value | 3440 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3440 |
| concepts[0].id | https://openalex.org/C2776133958 |
| concepts[0].level | 2 |
| concepts[0].score | 0.546529233455658 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7918366 |
| concepts[0].display_name | Vegetation (pathology) |
| concepts[1].id | https://openalex.org/C63817138 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5399053692817688 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3455889 |
| concepts[1].display_name | Quantile regression |
| concepts[2].id | https://openalex.org/C205649164 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5378699898719788 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[2].display_name | Geography |
| concepts[3].id | https://openalex.org/C2778572836 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5000793933868408 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[3].display_name | Space (punctuation) |
| concepts[4].id | https://openalex.org/C142853389 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49410727620124817 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q744778 |
| concepts[4].display_name | Association (psychology) |
| concepts[5].id | https://openalex.org/C118671147 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49187755584716797 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q578714 |
| concepts[5].display_name | Quantile |
| concepts[6].id | https://openalex.org/C2778898053 |
| concepts[6].level | 3 |
| concepts[6].score | 0.481356680393219 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q18648871 |
| concepts[6].display_name | Vegetation type |
| concepts[7].id | https://openalex.org/C2777299769 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4284239411354065 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3707858 |
| concepts[7].display_name | Type (biology) |
| concepts[8].id | https://openalex.org/C2994341026 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4135093092918396 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q18648871 |
| concepts[8].display_name | Vegetation types |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37784329056739807 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35013988614082336 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2991943657398224 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C18903297 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20785510540008545 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[12].display_name | Ecology |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13604536652565002 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0984758734703064 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0977182388305664 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C185933670 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q52105 |
| concepts[16].display_name | Habitat |
| concepts[17].id | https://openalex.org/C542102704 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[17].display_name | Psychotherapist |
| concepts[18].id | https://openalex.org/C71924100 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[18].display_name | Medicine |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| concepts[20].id | https://openalex.org/C142724271 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[20].display_name | Pathology |
| concepts[21].id | https://openalex.org/C2775835988 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1006733 |
| concepts[21].display_name | Grassland |
| keywords[0].id | https://openalex.org/keywords/vegetation |
| keywords[0].score | 0.546529233455658 |
| keywords[0].display_name | Vegetation (pathology) |
| keywords[1].id | https://openalex.org/keywords/quantile-regression |
| keywords[1].score | 0.5399053692817688 |
| keywords[1].display_name | Quantile regression |
| keywords[2].id | https://openalex.org/keywords/geography |
| keywords[2].score | 0.5378699898719788 |
| keywords[2].display_name | Geography |
| keywords[3].id | https://openalex.org/keywords/space |
| keywords[3].score | 0.5000793933868408 |
| keywords[3].display_name | Space (punctuation) |
| keywords[4].id | https://openalex.org/keywords/association |
| keywords[4].score | 0.49410727620124817 |
| keywords[4].display_name | Association (psychology) |
| keywords[5].id | https://openalex.org/keywords/quantile |
| keywords[5].score | 0.49187755584716797 |
| keywords[5].display_name | Quantile |
| keywords[6].id | https://openalex.org/keywords/vegetation-type |
| keywords[6].score | 0.481356680393219 |
| keywords[6].display_name | Vegetation type |
| keywords[7].id | https://openalex.org/keywords/type |
| keywords[7].score | 0.4284239411354065 |
| keywords[7].display_name | Type (biology) |
| keywords[8].id | https://openalex.org/keywords/vegetation-types |
| keywords[8].score | 0.4135093092918396 |
| keywords[8].display_name | Vegetation types |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.37784329056739807 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.35013988614082336 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2991943657398224 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/ecology |
| keywords[12].score | 0.20785510540008545 |
| keywords[12].display_name | Ecology |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.13604536652565002 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/psychology |
| keywords[14].score | 0.0984758734703064 |
| keywords[14].display_name | Psychology |
| keywords[15].id | https://openalex.org/keywords/biology |
| keywords[15].score | 0.0977182388305664 |
| keywords[15].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1016/j.ufug.2024.128523 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S99909709 |
| locations[0].source.issn | 1610-8167, 1618-8667 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1610-8167 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Urban forestry & urban greening |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Urban Forestry & Urban Greening |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ufug.2024.128523 |
| locations[1].id | pmh:oai:openaccess.city.ac.uk:33751 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401940 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | City Research Online (City University London) |
| locations[1].source.host_organization | https://openalex.org/I180825142 |
| locations[1].source.host_organization_name | City, University of London |
| locations[1].source.host_organization_lineage | https://openalex.org/I180825142 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | PeerReviewed |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://openaccess.city.ac.uk/view/creators_id/ruth=2Eweir.html> |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100653711 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7240-558X |
| authorships[0].author.display_name | Ruoyu Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruoyu Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022347737 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2738-8274 |
| authorships[1].author.display_name | Claire Cleland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Claire L. Cleland |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087565019 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5554-801X |
| authorships[2].author.display_name | Ruth Weir |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ruth Weir |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5074177783 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2711-0819 |
| authorships[3].author.display_name | Sally McManus |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sally McManus |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066283449 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Agustina Martire |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Agustina Martire |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009299240 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2837-2335 |
| authorships[5].author.display_name | George Grekousis |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | George Grekousis |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5036487360 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Dominic Bryan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dominic Bryan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5012976351 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7315-0382 |
| authorships[7].author.display_name | Ruth F. Hunter |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ruth F. Hunter |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ufug.2024.128523 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Rethinking the association between green space and crime using spatial quantile regression modelling: Do vegetation type, crime type, and crime rates matter? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10226 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Land Use and Ecosystem Services |
| related_works | https://openalex.org/W2354167449, https://openalex.org/W1977254801, https://openalex.org/W2388209269, https://openalex.org/W2349976117, https://openalex.org/W2364268767, https://openalex.org/W1607842735, https://openalex.org/W2981611434, https://openalex.org/W2367319130, https://openalex.org/W2371850528, https://openalex.org/W2373150498 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ufug.2024.128523 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S99909709 |
| best_oa_location.source.issn | 1610-8167, 1618-8667 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1610-8167 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Urban forestry & urban greening |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Urban Forestry & Urban Greening |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ufug.2024.128523 |
| primary_location.id | doi:10.1016/j.ufug.2024.128523 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S99909709 |
| primary_location.source.issn | 1610-8167, 1618-8667 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1610-8167 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Urban forestry & urban greening |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Urban Forestry & Urban Greening |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ufug.2024.128523 |
| publication_date | 2024-09-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1952913709, https://openalex.org/W2140581099, https://openalex.org/W2118898434, https://openalex.org/W2765928312, https://openalex.org/W2885964551, https://openalex.org/W3167362592, https://openalex.org/W2049393311, https://openalex.org/W2075184179, https://openalex.org/W2106381864, https://openalex.org/W2114698194, https://openalex.org/W4319071959, https://openalex.org/W4376619991, https://openalex.org/W2083215744, https://openalex.org/W4309758017, https://openalex.org/W2081814995, https://openalex.org/W2040856198, https://openalex.org/W3122937458, https://openalex.org/W2519536999, https://openalex.org/W2026169687, https://openalex.org/W2145035913, https://openalex.org/W6756456798, https://openalex.org/W2132097689, https://openalex.org/W2025956974, https://openalex.org/W4392619225, https://openalex.org/W4289939567, https://openalex.org/W6685813376, https://openalex.org/W6781320786, https://openalex.org/W2611128740, https://openalex.org/W2147718625, https://openalex.org/W6737690745, https://openalex.org/W6758199301, https://openalex.org/W2154963477, https://openalex.org/W2132050934, https://openalex.org/W2899874307, https://openalex.org/W2139217528, https://openalex.org/W2580656597, https://openalex.org/W6823589455, https://openalex.org/W3213734053, https://openalex.org/W2469861356, https://openalex.org/W2180372446, https://openalex.org/W3019661297, https://openalex.org/W3030581860, https://openalex.org/W6830039926, https://openalex.org/W4385490582, https://openalex.org/W2239128647, https://openalex.org/W3205477927, https://openalex.org/W6801418920, https://openalex.org/W2121666024, https://openalex.org/W6847775978, https://openalex.org/W3184733090, https://openalex.org/W2782457911, https://openalex.org/W222246702, https://openalex.org/W4247110653, https://openalex.org/W6788973781, https://openalex.org/W4292875485, https://openalex.org/W2897569881, https://openalex.org/W4214499645, https://openalex.org/W2818831300, https://openalex.org/W1541116297, https://openalex.org/W6790190114, https://openalex.org/W2082107925, https://openalex.org/W4289745016, https://openalex.org/W3200491102, https://openalex.org/W2072398096, https://openalex.org/W2995417792, https://openalex.org/W2206955770, https://openalex.org/W2023731194, https://openalex.org/W6860605064, https://openalex.org/W4376570197, https://openalex.org/W4280651418, https://openalex.org/W2085162815, https://openalex.org/W4389359675, https://openalex.org/W4224307504, https://openalex.org/W2514398333, https://openalex.org/W4220736350, https://openalex.org/W3137378441, https://openalex.org/W4212967174, https://openalex.org/W3195571282, https://openalex.org/W4324028770, https://openalex.org/W2985312465, https://openalex.org/W3049408734, https://openalex.org/W2790102522, https://openalex.org/W2972726114, https://openalex.org/W6839775427, https://openalex.org/W6839160493, https://openalex.org/W6857245032, https://openalex.org/W6846436366, https://openalex.org/W4311219950, https://openalex.org/W4298273802, https://openalex.org/W3000312909, https://openalex.org/W3198164821, https://openalex.org/W2613291816, https://openalex.org/W4390664425, https://openalex.org/W4282962131, https://openalex.org/W3047210581, https://openalex.org/W4308739591, https://openalex.org/W3121115439, https://openalex.org/W4387707088, https://openalex.org/W4286632705, https://openalex.org/W4241494570, https://openalex.org/W644028083, https://openalex.org/W2183439743, https://openalex.org/W4248470197, https://openalex.org/W1524014344 |
| referenced_works_count | 104 |
| abstract_inverted_index.& | 131 |
| abstract_inverted_index.a | 221 |
| abstract_inverted_index.In | 211 |
| abstract_inverted_index.NI | 107 |
| abstract_inverted_index.UK | 127 |
| abstract_inverted_index.UN | 0 |
| abstract_inverted_index.as | 220 |
| abstract_inverted_index.at | 117 |
| abstract_inverted_index.be | 41, 162, 181 |
| abstract_inverted_index.by | 73, 113, 125, 207 |
| abstract_inverted_index.in | 46, 93, 170, 227 |
| abstract_inverted_index.is | 32 |
| abstract_inverted_index.of | 11, 24, 48, 53, 77, 90, 153, 209, 231 |
| abstract_inverted_index.to | 19, 43, 63, 138 |
| abstract_inverted_index.we | 197 |
| abstract_inverted_index.16) | 6 |
| abstract_inverted_index.Map | 116 |
| abstract_inverted_index.The | 155 |
| abstract_inverted_index.and | 30, 50, 58, 71, 88, 108, 146, 204, 214, 236 |
| abstract_inverted_index.but | 168, 187 |
| abstract_inverted_index.due | 42 |
| abstract_inverted_index.for | 129, 189 |
| abstract_inverted_index.low | 174 |
| abstract_inverted_index.may | 40, 161, 179 |
| abstract_inverted_index.the | 9, 25, 38, 44, 51, 65, 75, 104, 118, 126, 140, 228 |
| abstract_inverted_index.was | 111 |
| abstract_inverted_index.Area | 121 |
| abstract_inverted_index.Goal | 5 |
| abstract_inverted_index.Land | 114 |
| abstract_inverted_index.More | 177 |
| abstract_inverted_index.Some | 34 |
| abstract_inverted_index.This | 60 |
| abstract_inverted_index.aims | 62 |
| abstract_inverted_index.also | 180 |
| abstract_inverted_index.data | 100 |
| abstract_inverted_index.from | 103 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.high | 193 |
| abstract_inverted_index.more | 159 |
| abstract_inverted_index.only | 169, 188 |
| abstract_inverted_index.that | 37, 158, 199 |
| abstract_inverted_index.type | 79, 84, 208, 235 |
| abstract_inverted_index.used | 137 |
| abstract_inverted_index.were | 101, 136 |
| abstract_inverted_index.with | 150, 164, 172, 183, 191 |
| abstract_inverted_index.(NI), | 96 |
| abstract_inverted_index.(SOA) | 122 |
| abstract_inverted_index.Also, | 196 |
| abstract_inverted_index.Cover | 115 |
| abstract_inverted_index.Crime | 99 |
| abstract_inverted_index.Goals | 3 |
| abstract_inverted_index.Super | 119 |
| abstract_inverted_index.areas | 149, 171, 190 |
| abstract_inverted_index.crime | 31, 54, 72, 83, 91, 147, 166, 175, 185, 194, 205, 223, 234, 237 |
| abstract_inverted_index.found | 198 |
| abstract_inverted_index.green | 28, 69, 109, 144, 202, 218 |
| abstract_inverted_index.level | 123 |
| abstract_inverted_index.lower | 165, 184 |
| abstract_inverted_index.model | 139 |
| abstract_inverted_index.rate. | 238 |
| abstract_inverted_index.rates | 52, 89, 152 |
| abstract_inverted_index.space | 29, 70, 110, 145, 203, 219 |
| abstract_inverted_index.study | 61 |
| abstract_inverted_index.tools | 14 |
| abstract_inverted_index.type, | 233 |
| abstract_inverted_index.types | 47 |
| abstract_inverted_index.urban | 17 |
| abstract_inverted_index.using | 12 |
| abstract_inverted_index.(e.g., | 4, 15, 80, 85 |
| abstract_inverted_index.Centre | 128 |
| abstract_inverted_index.Output | 120 |
| abstract_inverted_index.Police | 105 |
| abstract_inverted_index.United | 97 |
| abstract_inverted_index.across | 56, 148 |
| abstract_inverted_index.assess | 64 |
| abstract_inverted_index.crime. | 154, 210 |
| abstract_inverted_index.mixed. | 33 |
| abstract_inverted_index.policy | 13 |
| abstract_inverted_index.rates, | 167, 186 |
| abstract_inverted_index.rates. | 176, 195 |
| abstract_inverted_index.should | 216 |
| abstract_inverted_index.showed | 157 |
| abstract_inverted_index.theft) | 87 |
| abstract_inverted_index.varied | 206 |
| abstract_inverted_index.Ecology | 130 |
| abstract_inverted_index.Ireland | 95 |
| abstract_inverted_index.Service | 106 |
| abstract_inverted_index.Spatial | 133 |
| abstract_inverted_index.between | 27, 68, 143, 201 |
| abstract_inverted_index.crimes. | 21 |
| abstract_inverted_index.effects | 230 |
| abstract_inverted_index.prevent | 20 |
| abstract_inverted_index.regions | 57 |
| abstract_inverted_index.results | 156 |
| abstract_inverted_index.studies | 35 |
| abstract_inverted_index.through | 16 |
| abstract_inverted_index.Existing | 22 |
| abstract_inverted_index.Kingdom. | 98 |
| abstract_inverted_index.Northern | 94 |
| abstract_inverted_index.adjusted | 141 |
| abstract_inverted_index.consider | 217 |
| abstract_inverted_index.evidence | 23 |
| abstract_inverted_index.indicate | 36 |
| abstract_inverted_index.obtained | 102 |
| abstract_inverted_index.planners | 215 |
| abstract_inverted_index.provided | 124 |
| abstract_inverted_index.quantile | 134 |
| abstract_inverted_index.reported | 55, 92 |
| abstract_inverted_index.summary, | 212 |
| abstract_inverted_index.variance | 45 |
| abstract_inverted_index.woodland | 178 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.factoring | 226 |
| abstract_inverted_index.grassland | 160 |
| abstract_inverted_index.influence | 76 |
| abstract_inverted_index.planning) | 18 |
| abstract_inverted_index.potential | 222 |
| abstract_inverted_index.reduction | 224 |
| abstract_inverted_index.violence, | 86 |
| abstract_inverted_index.Hydrology. | 132 |
| abstract_inverted_index.associated | 163, 182 |
| abstract_inverted_index.countries. | 59 |
| abstract_inverted_index.determined | 112 |
| abstract_inverted_index.grassland, | 81 |
| abstract_inverted_index.importance | 10 |
| abstract_inverted_index.relatively | 173, 192 |
| abstract_inverted_index.vegetation | 49, 78, 232 |
| abstract_inverted_index.woodland), | 82 |
| abstract_inverted_index.Development | 2 |
| abstract_inverted_index.Sustainable | 1 |
| abstract_inverted_index.association | 26, 67, 142 |
| abstract_inverted_index.conditional | 66 |
| abstract_inverted_index.considering | 74 |
| abstract_inverted_index.highlighted | 8 |
| abstract_inverted_index.regressions | 135 |
| abstract_inverted_index.associations | 200 |
| abstract_inverted_index.policymakers | 213 |
| abstract_inverted_index.heterogeneous | 229 |
| abstract_inverted_index.intervention, | 225 |
| abstract_inverted_index.inconsistencies | 39 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.93769135 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |