[Retracted] Age Label Distribution Learning Based on Unsupervised Comparisons of Faces Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1155/2021/1996803
Although label distribution learning has made significant progress in the field of face age estimation, unsupervised learning has not been widely adopted and is still an important and challenging task. In this work, we propose an unsupervised contrastive label distribution learning method (UCLD) for facial age estimation. This method is helpful to extract semantic and meaningful information of raw faces with preserving high‐order correlation between adjacent ages. Similar to the processing method of wireless sensor network, we designed the ConAge network with the contrast learning method. As a result, our model maximizes the similarity of positive samples by data enhancement and simultaneously pushes the clusters of negative samples apart. Compared to state‐of‐the‐art methods, we achieve compelling results on the widely used benchmark, i.e., MORPH.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2021/1996803
- https://downloads.hindawi.com/journals/wcmc/2021/1996803.pdf
- OA Status
- hybrid
- Cited By
- 3
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3213050152
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3213050152Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2021/1996803Digital Object Identifier
- Title
-
[Retracted] Age Label Distribution Learning Based on Unsupervised Comparisons of FacesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Qiyuan Li, Zongyong Deng, Weichang Xu, Zhendong Li, Hao LiuList of authors in order
- Landing page
-
https://doi.org/10.1155/2021/1996803Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/wcmc/2021/1996803.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/wcmc/2021/1996803.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Benchmark (surveying), Machine learning, Unsupervised learning, Contrast (vision), Similarity (geometry), Face (sociological concept), Field (mathematics), Task (project management), Pattern recognition (psychology), Cluster analysis, Deep learning, Image (mathematics), Mathematics, Social science, Geography, Sociology, Pure mathematics, Economics, Management, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3213050152 |
|---|---|
| doi | https://doi.org/10.1155/2021/1996803 |
| ids.doi | https://doi.org/10.1155/2021/1996803 |
| ids.mag | 3213050152 |
| ids.openalex | https://openalex.org/W3213050152 |
| fwci | 0.30665844 |
| type | article |
| title | [Retracted] Age Label Distribution Learning Based on Unsupervised Comparisons of Faces |
| awards[0].id | https://openalex.org/G8205489182 |
| awards[0].funder_id | https://openalex.org/F4320321133 |
| awards[0].display_name | |
| awards[0].funder_award_id | XAB2018AW05 |
| awards[0].funder_display_name | Chinese Academy of Sciences |
| awards[1].id | https://openalex.org/G4075719093 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62076142 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G563333535 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61806104 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 2021 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9884999990463257 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9714999794960022 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321133 |
| funders[1].ror | https://ror.org/034t30j35 |
| funders[1].display_name | Chinese Academy of Sciences |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | USD |
| apc_list.value_usd | 2300 |
| apc_paid.value | 2300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2300 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8555634021759033 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6975022554397583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6301622986793518 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5813819766044617 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C8038995 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5720502734184265 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[4].display_name | Unsupervised learning |
| concepts[5].id | https://openalex.org/C2776502983 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5386896133422852 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[5].display_name | Contrast (vision) |
| concepts[6].id | https://openalex.org/C103278499 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5274108648300171 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[6].display_name | Similarity (geometry) |
| concepts[7].id | https://openalex.org/C2779304628 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5232447981834412 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[7].display_name | Face (sociological concept) |
| concepts[8].id | https://openalex.org/C9652623 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5030462145805359 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[8].display_name | Field (mathematics) |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4802406430244446 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45690739154815674 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C73555534 |
| concepts[11].level | 2 |
| concepts[11].score | 0.431558221578598 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[11].display_name | Cluster analysis |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4298282861709595 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.20873063802719116 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07447600364685059 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C36289849 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[15].display_name | Social science |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C202444582 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[18].display_name | Pure mathematics |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C187736073 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[20].display_name | Management |
| concepts[21].id | https://openalex.org/C13280743 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[21].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8555634021759033 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6975022554397583 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.6301622986793518 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5813819766044617 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[4].score | 0.5720502734184265 |
| keywords[4].display_name | Unsupervised learning |
| keywords[5].id | https://openalex.org/keywords/contrast |
| keywords[5].score | 0.5386896133422852 |
| keywords[5].display_name | Contrast (vision) |
| keywords[6].id | https://openalex.org/keywords/similarity |
| keywords[6].score | 0.5274108648300171 |
| keywords[6].display_name | Similarity (geometry) |
| keywords[7].id | https://openalex.org/keywords/face |
| keywords[7].score | 0.5232447981834412 |
| keywords[7].display_name | Face (sociological concept) |
| keywords[8].id | https://openalex.org/keywords/field |
| keywords[8].score | 0.5030462145805359 |
| keywords[8].display_name | Field (mathematics) |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.4802406430244446 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.45690739154815674 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/cluster-analysis |
| keywords[11].score | 0.431558221578598 |
| keywords[11].display_name | Cluster analysis |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.4298282861709595 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.20873063802719116 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.07447600364685059 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1155/2021/1996803 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S235346 |
| locations[0].source.issn | 1530-8669, 1530-8677 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1530-8669 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Wireless Communications and Mobile Computing |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/wcmc/2021/1996803.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Wireless Communications and Mobile Computing |
| locations[0].landing_page_url | https://doi.org/10.1155/2021/1996803 |
| locations[1].id | pmh:oai:doaj.org/article:9640fe6736fd4ff3a1698e9e7d3de9cb |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Wireless Communications and Mobile Computing, Vol 2021 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/9640fe6736fd4ff3a1698e9e7d3de9cb |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101914850 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7801-3088 |
| authorships[0].author.display_name | Qiyuan Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21642278 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I21642278 |
| authorships[0].institutions[1].ror | https://ror.org/04j7b2v61 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I21642278 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ningxia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qiyuan Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China, School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[1].author.id | https://openalex.org/A5015121624 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-1519-6918 |
| authorships[1].author.display_name | Zongyong Deng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21642278 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu 610065, China |
| authorships[1].institutions[0].id | https://openalex.org/I21642278 |
| authorships[1].institutions[0].ror | https://ror.org/04j7b2v61 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21642278 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Ningxia University |
| authorships[1].institutions[1].id | https://openalex.org/I24185976 |
| authorships[1].institutions[1].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zongyong Deng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu 610065, China, School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[2].author.id | https://openalex.org/A5030329116 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5800-9567 |
| authorships[2].author.display_name | Weichang Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21642278 |
| authorships[2].affiliations[0].raw_affiliation_string | Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I21642278 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[2].institutions[0].id | https://openalex.org/I21642278 |
| authorships[2].institutions[0].ror | https://ror.org/04j7b2v61 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21642278 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ningxia University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weichang Xu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China, School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[3].author.id | https://openalex.org/A5101561563 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5411-2612 |
| authorships[3].author.display_name | Zhendong Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21642278 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I21642278 |
| authorships[3].affiliations[1].raw_affiliation_string | Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China |
| authorships[3].institutions[0].id | https://openalex.org/I21642278 |
| authorships[3].institutions[0].ror | https://ror.org/04j7b2v61 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21642278 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Ningxia University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhendong Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China, School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[4].author.id | https://openalex.org/A5100458873 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0954-5405 |
| authorships[4].author.display_name | Hao Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I21642278 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I21642278 |
| authorships[4].affiliations[1].raw_affiliation_string | Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China |
| authorships[4].institutions[0].id | https://openalex.org/I21642278 |
| authorships[4].institutions[0].ror | https://ror.org/04j7b2v61 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I21642278 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Ningxia University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hao Liu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China, School of Information Engineering, Ningxia University, Yinchuan 750021, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/wcmc/2021/1996803.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | [Retracted] Age Label Distribution Learning Based on Unsupervised Comparisons of Faces |
| has_fulltext | True |
| is_retracted | True |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2745001401, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W4246352526, https://openalex.org/W2121910908, https://openalex.org/W4220926404, https://openalex.org/W3123344745 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2021/1996803 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S235346 |
| best_oa_location.source.issn | 1530-8669, 1530-8677 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1530-8669 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Wireless Communications and Mobile Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/wcmc/2021/1996803.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Wireless Communications and Mobile Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2021/1996803 |
| primary_location.id | doi:10.1155/2021/1996803 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S235346 |
| primary_location.source.issn | 1530-8669, 1530-8677 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1530-8669 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Wireless Communications and Mobile Computing |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/wcmc/2021/1996803.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Wireless Communications and Mobile Computing |
| primary_location.landing_page_url | https://doi.org/10.1155/2021/1996803 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2807323414, https://openalex.org/W2955216108, https://openalex.org/W2962851632, https://openalex.org/W2106488920, https://openalex.org/W2105026179, https://openalex.org/W1669690275, https://openalex.org/W2151386286, https://openalex.org/W2009088607, https://openalex.org/W2553156677, https://openalex.org/W2066454034, https://openalex.org/W2579021424, https://openalex.org/W3035380522, https://openalex.org/W2049633694, https://openalex.org/W2807904173, https://openalex.org/W6776700526, https://openalex.org/W3108655343, https://openalex.org/W2039140324, https://openalex.org/W2510725918, https://openalex.org/W2772936956, https://openalex.org/W4287812705, https://openalex.org/W3105616927 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 87 |
| abstract_inverted_index.As | 86 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.an | 25, 35 |
| abstract_inverted_index.by | 97 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.is | 23, 49 |
| abstract_inverted_index.of | 11, 57, 72, 94, 105 |
| abstract_inverted_index.on | 117 |
| abstract_inverted_index.to | 51, 68, 110 |
| abstract_inverted_index.we | 33, 76, 113 |
| abstract_inverted_index.age | 13, 45 |
| abstract_inverted_index.and | 22, 27, 54, 100 |
| abstract_inverted_index.for | 43 |
| abstract_inverted_index.has | 4, 17 |
| abstract_inverted_index.not | 18 |
| abstract_inverted_index.our | 89 |
| abstract_inverted_index.raw | 58 |
| abstract_inverted_index.the | 9, 69, 78, 82, 92, 103, 118 |
| abstract_inverted_index.This | 47 |
| abstract_inverted_index.been | 19 |
| abstract_inverted_index.data | 98 |
| abstract_inverted_index.face | 12 |
| abstract_inverted_index.made | 5 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.used | 120 |
| abstract_inverted_index.with | 60, 81 |
| abstract_inverted_index.ages. | 66 |
| abstract_inverted_index.faces | 59 |
| abstract_inverted_index.field | 10 |
| abstract_inverted_index.i.e., | 122 |
| abstract_inverted_index.label | 1, 38 |
| abstract_inverted_index.model | 90 |
| abstract_inverted_index.still | 24 |
| abstract_inverted_index.task. | 29 |
| abstract_inverted_index.work, | 32 |
| abstract_inverted_index.(UCLD) | 42 |
| abstract_inverted_index.ConAge | 79 |
| abstract_inverted_index.MORPH. | 123 |
| abstract_inverted_index.apart. | 108 |
| abstract_inverted_index.facial | 44 |
| abstract_inverted_index.method | 41, 48, 71 |
| abstract_inverted_index.pushes | 102 |
| abstract_inverted_index.sensor | 74 |
| abstract_inverted_index.widely | 20, 119 |
| abstract_inverted_index.Similar | 67 |
| abstract_inverted_index.achieve | 114 |
| abstract_inverted_index.adopted | 21 |
| abstract_inverted_index.between | 64 |
| abstract_inverted_index.extract | 52 |
| abstract_inverted_index.helpful | 50 |
| abstract_inverted_index.method. | 85 |
| abstract_inverted_index.network | 80 |
| abstract_inverted_index.propose | 34 |
| abstract_inverted_index.result, | 88 |
| abstract_inverted_index.results | 116 |
| abstract_inverted_index.samples | 96, 107 |
| abstract_inverted_index.Although | 0 |
| abstract_inverted_index.Compared | 109 |
| abstract_inverted_index.adjacent | 65 |
| abstract_inverted_index.clusters | 104 |
| abstract_inverted_index.contrast | 83 |
| abstract_inverted_index.designed | 77 |
| abstract_inverted_index.learning | 3, 16, 40, 84 |
| abstract_inverted_index.methods, | 112 |
| abstract_inverted_index.negative | 106 |
| abstract_inverted_index.network, | 75 |
| abstract_inverted_index.positive | 95 |
| abstract_inverted_index.progress | 7 |
| abstract_inverted_index.semantic | 53 |
| abstract_inverted_index.wireless | 73 |
| abstract_inverted_index.important | 26 |
| abstract_inverted_index.maximizes | 91 |
| abstract_inverted_index.benchmark, | 121 |
| abstract_inverted_index.compelling | 115 |
| abstract_inverted_index.meaningful | 55 |
| abstract_inverted_index.preserving | 61 |
| abstract_inverted_index.processing | 70 |
| abstract_inverted_index.similarity | 93 |
| abstract_inverted_index.challenging | 28 |
| abstract_inverted_index.contrastive | 37 |
| abstract_inverted_index.correlation | 63 |
| abstract_inverted_index.enhancement | 99 |
| abstract_inverted_index.estimation, | 14 |
| abstract_inverted_index.estimation. | 46 |
| abstract_inverted_index.information | 56 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.distribution | 2, 39 |
| abstract_inverted_index.high‐order | 62 |
| abstract_inverted_index.unsupervised | 15, 36 |
| abstract_inverted_index.simultaneously | 101 |
| abstract_inverted_index.state‐of‐the‐art | 111 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5030329116, https://openalex.org/A5100458873 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I21642278 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.5833891 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |