RETRACTED: Continual Learning Approach for Continuous Data Stream Analysis in Dynamic Environments Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/app13148004
Continuous data stream analysis primarily focuses on the unanticipated changes in the transmission of data distribution over time. Conceptual change is defined as the signal distribution changes over the transmission of continuous data streams. A drift detection scenario is set forth to develop methods and strategies for detecting, interpreting, and adapting to conceptual changes over data streams. Machine learning approaches can produce poor learning outcomes in the conceptual change environment if the sudden change is not addressed. Furthermore, due to developments in concept drift, learning methodologies have been significantly systematic in recent years. The research introduces a novel approach using the fully connected committee machine (FCM) and different activation functions to address conceptual changes in continuous data streams. It explores scenarios of continual learning and investigates the effects of over-learning and weight decay on concept drift. The findings demonstrate the effectiveness of the FCM framework and provide insights into improving machine learning approaches for continuous data stream analysis. We used a layered neural network framework to experiment with different scenarios of continual learning on continuous data streams in the presence of change in the data distribution using a fully connected committee machine (FCM). In this research, we conduct experiments in various scenarios using a layered neural network framework, specifically the fully connected committee machine (FCM), to address conceptual changes in continuous data streams for continual learning under a conceptual change in the data distribution. Sigmoidal and ReLU (Rectified Linear Unit) activation functions are considered for learning regression in layered neural networks. When the layered framework is trained from the input data stream, the regression scheme changes consciously in all scenarios. A fully connected committee machine (FCM) is trained to perform the tasks described in continual learning with M hidden units on dynamically generated inputs. In this method, we run Monte Carlo simulations with the same number of units on both sides, K and M, to define the advancement of intersections between several hidden units and the calculation of generalization error. This is applied to over-learnability as a method of over-forgetting, integrating weight decay, and examining its effects when a concept drift is presented.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app13148004
- https://www.mdpi.com/2076-3417/13/14/8004/pdf?version=1688800335
- OA Status
- gold
- Cited By
- 8
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383817891
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383817891Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app13148004Digital Object Identifier
- Title
-
RETRACTED: Continual Learning Approach for Continuous Data Stream Analysis in Dynamic EnvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-08Full publication date if available
- Authors
-
K. Prasanna, Mudassir Khan, Saeed M. Alshahrani, Ajmeera Kiran, P. Phanindra Kumar Reddy, Mofadal Alymani, J. Chinna BabuList of authors in order
- Landing page
-
https://doi.org/10.3390/app13148004Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/13/14/8004/pdf?version=1688800335Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/13/14/8004/pdf?version=1688800335Direct OA link when available
- Concepts
-
Concept drift, Data stream mining, Computer science, Artificial intelligence, Machine learning, Data stream, Artificial neural network, Data mining, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 7, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383817891 |
|---|---|
| doi | https://doi.org/10.3390/app13148004 |
| ids.doi | https://doi.org/10.3390/app13148004 |
| ids.openalex | https://openalex.org/W4383817891 |
| fwci | 2.0435431 |
| type | article |
| title | RETRACTED: Continual Learning Approach for Continuous Data Stream Analysis in Dynamic Environments |
| biblio.issue | 14 |
| biblio.volume | 13 |
| biblio.last_page | 8004 |
| biblio.first_page | 8004 |
| topics[0].id | https://openalex.org/T12761 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Stream Mining Techniques |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C60777511 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8435776233673096 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3045002 |
| concepts[0].display_name | Concept drift |
| concepts[1].id | https://openalex.org/C89198739 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8395602703094482 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3079880 |
| concepts[1].display_name | Data stream mining |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.714358389377594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6184015274047852 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5710287690162659 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2778484313 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5461082458496094 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1172540 |
| concepts[5].display_name | Data stream |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5364831686019897 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4954298734664917 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C76155785 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[8].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/concept-drift |
| keywords[0].score | 0.8435776233673096 |
| keywords[0].display_name | Concept drift |
| keywords[1].id | https://openalex.org/keywords/data-stream-mining |
| keywords[1].score | 0.8395602703094482 |
| keywords[1].display_name | Data stream mining |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.714358389377594 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6184015274047852 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5710287690162659 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/data-stream |
| keywords[5].score | 0.5461082458496094 |
| keywords[5].display_name | Data stream |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5364831686019897 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4954298734664917 |
| keywords[7].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.3390/app13148004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/13/14/8004/pdf?version=1688800335 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app13148004 |
| locations[1].id | pmh:oai:doaj.org/article:e1b115358805411ba1f729f3b469fe39 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 13, Iss 14, p 8004 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/e1b115358805411ba1f729f3b469fe39 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5112706489 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | K. Prasanna |
| authorships[0].affiliations[0].raw_affiliation_string | Department of CSE(AI&ML), G. Narayanamma Institute of Technology and Science, (Autonomous), Hyderabad 500104, Telangana, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | K. Prasanna |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of CSE(AI&ML), G. Narayanamma Institute of Technology and Science, (Autonomous), Hyderabad 500104, Telangana, India |
| authorships[1].author.id | https://openalex.org/A5024573472 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1117-7819 |
| authorships[1].author.display_name | Mudassir Khan |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Science & Arts, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I82952536 |
| authorships[1].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Khalid University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mudassir Khan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, College of Science & Arts, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5074833200 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0499-7170 |
| authorships[2].author.display_name | Saeed M. Alshahrani |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I206935292 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computing and Information Technology, Shaqra University, P.O. Box 30, Shaqra 11961, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I206935292 |
| authorships[2].institutions[0].ror | https://ror.org/05hawb687 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I206935292 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Shaqra University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saeed Alshahrani |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Computer Science, College of Computing and Information Technology, Shaqra University, P.O. Box 30, Shaqra 11961, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5087336365 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3826-4346 |
| authorships[3].author.display_name | Ajmeera Kiran |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad 500043, Telangana, India |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ajmeera Kiran |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad 500043, Telangana, India |
| authorships[4].author.id | https://openalex.org/A5056544906 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | P. Phanindra Kumar Reddy |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences (Autonomous), Rajampet 516126, Andhra Pradesh, India |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | P. Phanindra Kumar Reddy |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences (Autonomous), Rajampet 516126, Andhra Pradesh, India |
| authorships[5].author.id | https://openalex.org/A5063942642 |
| authorships[5].author.orcid | https://orcid.org/0009-0008-4830-6590 |
| authorships[5].author.display_name | Mofadal Alymani |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I206935292 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Engineering, College of Computing and Information Technology, Shaqra University, P.O. Box 30, Shaqra 11961, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I206935292 |
| authorships[5].institutions[0].ror | https://ror.org/05hawb687 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I206935292 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Shaqra University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mofadal Alymani |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Engineering, College of Computing and Information Technology, Shaqra University, P.O. Box 30, Shaqra 11961, Saudi Arabia |
| authorships[6].author.id | https://openalex.org/A5035846068 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | J. Chinna Babu |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electronics and Communications Engineering, Annamacharya Institute of Technology and Sciences (Autonomous), Rajampet 516126, Andhra Pradesh, India |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | J. Chinna Babu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electronics and Communications Engineering, Annamacharya Institute of Technology and Sciences (Autonomous), Rajampet 516126, Andhra Pradesh, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/13/14/8004/pdf?version=1688800335 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RETRACTED: Continual Learning Approach for Continuous Data Stream Analysis in Dynamic Environments |
| has_fulltext | True |
| is_retracted | True |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12761 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Stream Mining Techniques |
| related_works | https://openalex.org/W4307392573, https://openalex.org/W2802243998, https://openalex.org/W2736127210, https://openalex.org/W2329342202, https://openalex.org/W2574092225, https://openalex.org/W2161835057, https://openalex.org/W1521014365, https://openalex.org/W4200217704, https://openalex.org/W3208495060, https://openalex.org/W2740428142 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app13148004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/13/14/8004/pdf?version=1688800335 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app13148004 |
| primary_location.id | doi:10.3390/app13148004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/13/14/8004/pdf?version=1688800335 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app13148004 |
| publication_date | 2023-07-08 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2163605009, https://openalex.org/W2187281534, https://openalex.org/W6785333560, https://openalex.org/W2744654301, https://openalex.org/W2099419573, https://openalex.org/W1969891152, https://openalex.org/W2787894218, https://openalex.org/W2897471074, https://openalex.org/W3026735626, https://openalex.org/W3033802168, https://openalex.org/W2221794486, https://openalex.org/W1999038366, https://openalex.org/W2585508806, https://openalex.org/W2886602077, https://openalex.org/W2739567232, https://openalex.org/W2767528836, https://openalex.org/W2560647685, https://openalex.org/W2037985840, https://openalex.org/W4294831559, https://openalex.org/W4289668414, https://openalex.org/W6847225847, https://openalex.org/W2758219826, https://openalex.org/W6790632664, https://openalex.org/W2526273923, https://openalex.org/W3123859009, https://openalex.org/W3139478953, https://openalex.org/W3178380536, https://openalex.org/W3138288887, https://openalex.org/W1984627576, https://openalex.org/W6676408146, https://openalex.org/W1650706190, https://openalex.org/W2040870580, https://openalex.org/W2042318263, https://openalex.org/W2034093454, https://openalex.org/W3130885914, https://openalex.org/W4241336979, https://openalex.org/W2109834471, https://openalex.org/W3102015031, https://openalex.org/W4382318632, https://openalex.org/W3159709279 |
| referenced_works_count | 40 |
| abstract_inverted_index.A | 34, 270 |
| abstract_inverted_index.K | 311 |
| abstract_inverted_index.M | 287 |
| abstract_inverted_index.a | 96, 160, 187, 203, 227, 336, 348 |
| abstract_inverted_index.In | 193, 294 |
| abstract_inverted_index.It | 118 |
| abstract_inverted_index.M, | 313 |
| abstract_inverted_index.We | 158 |
| abstract_inverted_index.as | 22, 335 |
| abstract_inverted_index.if | 70 |
| abstract_inverted_index.in | 10, 65, 81, 90, 114, 177, 182, 199, 219, 230, 247, 267, 283 |
| abstract_inverted_index.is | 20, 38, 74, 255, 276, 331, 351 |
| abstract_inverted_index.of | 13, 30, 121, 128, 141, 170, 180, 306, 318, 327, 338 |
| abstract_inverted_index.on | 6, 133, 173, 290, 308 |
| abstract_inverted_index.to | 41, 51, 79, 110, 165, 215, 278, 314, 333 |
| abstract_inverted_index.we | 196, 297 |
| abstract_inverted_index.FCM | 143 |
| abstract_inverted_index.The | 93, 136 |
| abstract_inverted_index.all | 268 |
| abstract_inverted_index.and | 44, 49, 106, 124, 130, 145, 235, 312, 324, 343 |
| abstract_inverted_index.are | 242 |
| abstract_inverted_index.can | 60 |
| abstract_inverted_index.due | 78 |
| abstract_inverted_index.for | 46, 153, 223, 244 |
| abstract_inverted_index.its | 345 |
| abstract_inverted_index.not | 75 |
| abstract_inverted_index.run | 298 |
| abstract_inverted_index.set | 39 |
| abstract_inverted_index.the | 7, 11, 23, 28, 66, 71, 100, 126, 139, 142, 178, 183, 209, 231, 252, 258, 262, 280, 303, 316, 325 |
| abstract_inverted_index.ReLU | 236 |
| abstract_inverted_index.This | 330 |
| abstract_inverted_index.When | 251 |
| abstract_inverted_index.been | 87 |
| abstract_inverted_index.both | 309 |
| abstract_inverted_index.data | 1, 14, 32, 55, 116, 155, 175, 184, 221, 232, 260 |
| abstract_inverted_index.from | 257 |
| abstract_inverted_index.have | 86 |
| abstract_inverted_index.into | 148 |
| abstract_inverted_index.over | 16, 27, 54 |
| abstract_inverted_index.poor | 62 |
| abstract_inverted_index.same | 304 |
| abstract_inverted_index.this | 194, 295 |
| abstract_inverted_index.used | 159 |
| abstract_inverted_index.when | 347 |
| abstract_inverted_index.with | 167, 286, 302 |
| abstract_inverted_index.(FCM) | 105, 275 |
| abstract_inverted_index.Carlo | 300 |
| abstract_inverted_index.Monte | 299 |
| abstract_inverted_index.Unit) | 239 |
| abstract_inverted_index.decay | 132 |
| abstract_inverted_index.drift | 35, 350 |
| abstract_inverted_index.forth | 40 |
| abstract_inverted_index.fully | 101, 188, 210, 271 |
| abstract_inverted_index.input | 259 |
| abstract_inverted_index.novel | 97 |
| abstract_inverted_index.tasks | 281 |
| abstract_inverted_index.time. | 17 |
| abstract_inverted_index.under | 226 |
| abstract_inverted_index.units | 289, 307, 323 |
| abstract_inverted_index.using | 99, 186, 202 |
| abstract_inverted_index.(FCM), | 214 |
| abstract_inverted_index.(FCM). | 192 |
| abstract_inverted_index.Linear | 238 |
| abstract_inverted_index.change | 19, 68, 73, 181, 229 |
| abstract_inverted_index.decay, | 342 |
| abstract_inverted_index.define | 315 |
| abstract_inverted_index.drift, | 83 |
| abstract_inverted_index.drift. | 135 |
| abstract_inverted_index.error. | 329 |
| abstract_inverted_index.hidden | 288, 322 |
| abstract_inverted_index.method | 337 |
| abstract_inverted_index.neural | 162, 205, 249 |
| abstract_inverted_index.number | 305 |
| abstract_inverted_index.recent | 91 |
| abstract_inverted_index.scheme | 264 |
| abstract_inverted_index.sides, | 310 |
| abstract_inverted_index.signal | 24 |
| abstract_inverted_index.stream | 2, 156 |
| abstract_inverted_index.sudden | 72 |
| abstract_inverted_index.weight | 131, 341 |
| abstract_inverted_index.years. | 92 |
| abstract_inverted_index.Machine | 57 |
| abstract_inverted_index.address | 111, 216 |
| abstract_inverted_index.applied | 332 |
| abstract_inverted_index.between | 320 |
| abstract_inverted_index.changes | 9, 26, 53, 113, 218, 265 |
| abstract_inverted_index.concept | 82, 134, 349 |
| abstract_inverted_index.conduct | 197 |
| abstract_inverted_index.defined | 21 |
| abstract_inverted_index.develop | 42 |
| abstract_inverted_index.effects | 127, 346 |
| abstract_inverted_index.focuses | 5 |
| abstract_inverted_index.inputs. | 293 |
| abstract_inverted_index.layered | 161, 204, 248, 253 |
| abstract_inverted_index.machine | 104, 150, 191, 213, 274 |
| abstract_inverted_index.method, | 296 |
| abstract_inverted_index.methods | 43 |
| abstract_inverted_index.network | 163, 206 |
| abstract_inverted_index.perform | 279 |
| abstract_inverted_index.produce | 61 |
| abstract_inverted_index.provide | 146 |
| abstract_inverted_index.several | 321 |
| abstract_inverted_index.stream, | 261 |
| abstract_inverted_index.streams | 176, 222 |
| abstract_inverted_index.trained | 256, 277 |
| abstract_inverted_index.various | 200 |
| abstract_inverted_index.adapting | 50 |
| abstract_inverted_index.analysis | 3 |
| abstract_inverted_index.approach | 98 |
| abstract_inverted_index.explores | 119 |
| abstract_inverted_index.findings | 137 |
| abstract_inverted_index.insights | 147 |
| abstract_inverted_index.learning | 58, 63, 84, 123, 151, 172, 225, 245, 285 |
| abstract_inverted_index.outcomes | 64 |
| abstract_inverted_index.presence | 179 |
| abstract_inverted_index.research | 94 |
| abstract_inverted_index.scenario | 37 |
| abstract_inverted_index.streams. | 33, 56, 117 |
| abstract_inverted_index.Sigmoidal | 234 |
| abstract_inverted_index.analysis. | 157 |
| abstract_inverted_index.committee | 103, 190, 212, 273 |
| abstract_inverted_index.connected | 102, 189, 211, 272 |
| abstract_inverted_index.continual | 122, 171, 224, 284 |
| abstract_inverted_index.described | 282 |
| abstract_inverted_index.detection | 36 |
| abstract_inverted_index.different | 107, 168 |
| abstract_inverted_index.examining | 344 |
| abstract_inverted_index.framework | 144, 164, 254 |
| abstract_inverted_index.functions | 109, 241 |
| abstract_inverted_index.generated | 292 |
| abstract_inverted_index.improving | 149 |
| abstract_inverted_index.networks. | 250 |
| abstract_inverted_index.primarily | 4 |
| abstract_inverted_index.research, | 195 |
| abstract_inverted_index.scenarios | 120, 169, 201 |
| abstract_inverted_index.(Rectified | 237 |
| abstract_inverted_index.Conceptual | 18 |
| abstract_inverted_index.Continuous | 0 |
| abstract_inverted_index.activation | 108, 240 |
| abstract_inverted_index.addressed. | 76 |
| abstract_inverted_index.approaches | 59, 152 |
| abstract_inverted_index.conceptual | 52, 67, 112, 217, 228 |
| abstract_inverted_index.considered | 243 |
| abstract_inverted_index.continuous | 31, 115, 154, 174, 220 |
| abstract_inverted_index.detecting, | 47 |
| abstract_inverted_index.experiment | 166 |
| abstract_inverted_index.framework, | 207 |
| abstract_inverted_index.introduces | 95 |
| abstract_inverted_index.presented. | 352 |
| abstract_inverted_index.regression | 246, 263 |
| abstract_inverted_index.scenarios. | 269 |
| abstract_inverted_index.strategies | 45 |
| abstract_inverted_index.systematic | 89 |
| abstract_inverted_index.advancement | 317 |
| abstract_inverted_index.calculation | 326 |
| abstract_inverted_index.consciously | 266 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.dynamically | 291 |
| abstract_inverted_index.environment | 69 |
| abstract_inverted_index.experiments | 198 |
| abstract_inverted_index.integrating | 340 |
| abstract_inverted_index.simulations | 301 |
| abstract_inverted_index.Furthermore, | 77 |
| abstract_inverted_index.developments | 80 |
| abstract_inverted_index.distribution | 15, 25, 185 |
| abstract_inverted_index.investigates | 125 |
| abstract_inverted_index.specifically | 208 |
| abstract_inverted_index.transmission | 12, 29 |
| abstract_inverted_index.distribution. | 233 |
| abstract_inverted_index.effectiveness | 140 |
| abstract_inverted_index.interpreting, | 48 |
| abstract_inverted_index.intersections | 319 |
| abstract_inverted_index.methodologies | 85 |
| abstract_inverted_index.over-learning | 129 |
| abstract_inverted_index.significantly | 88 |
| abstract_inverted_index.unanticipated | 8 |
| abstract_inverted_index.generalization | 328 |
| abstract_inverted_index.over-forgetting, | 339 |
| abstract_inverted_index.over-learnability | 334 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5074833200 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I206935292 |
| citation_normalized_percentile.value | 0.86743864 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |