RetroCaptioner: beyond attention in end-to-end retrosynthesis transformer via contrastively captioned learnable graph representation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btae561
Motivation Retrosynthesis identifies available precursor molecules for various and novel compounds. With the advancements and practicality of language models, Transformer-based models have increasingly been used to automate this process. However, many existing methods struggle to efficiently capture reaction transformation information, limiting the accuracy and applicability of their predictions. Results We introduce RetroCaptioner, an advanced end-to-end, Transformer-based framework featuring a Contrastive Reaction Center Captioner. This captioner guides the training of dual-view attention models using a contrastive learning approach. It leverages learned molecular graph representations to capture chemically plausible constraints within a single-step learning process. We integrate the single-encoder, dual-encoder, and encoder–decoder paradigms to effectively fuse information from the sequence and graph representations of molecules. This involves modifying the Transformer encoder into a uni-view sequence encoder and a dual-view module. Furthermore, we enhance the captioning of atomic correspondence between SMILES and graphs. Our proposed method, RetroCaptioner, achieved outstanding performance with 67.2% in top-1 and 93.4% in top-10 exact matched accuracy on the USPTO-50k dataset, alongside an exceptional SMILES validity score of 99.4%. In addition, RetroCaptioner has demonstrated its reliability in generating synthetic routes for the drug protokylol. Availability and implementation The code and data are available at https://github.com/guofei-tju/RetroCaptioner.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btae561
- OA Status
- gold
- Cited By
- 11
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402947492
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402947492Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btae561Digital Object Identifier
- Title
-
RetroCaptioner: beyond attention in end-to-end retrosynthesis transformer via contrastively captioned learnable graph representationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-01Full publication date if available
- Authors
-
Xiaoyi Liu, Chengwei Ai, Hongpeng Yang, Ruihan Dong, Jijun Tang, Shuangjia Zheng, Fei GuoList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btae561Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/bioinformatics/btae561Direct OA link when available
- Concepts
-
Computer science, Encoder, Transformer, Artificial intelligence, Graph, Natural language processing, Theoretical computer science, Engineering, Operating system, Voltage, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402947492 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btae561 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btae561 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39342389 |
| ids.openalex | https://openalex.org/W4402947492 |
| fwci | 8.69149132 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D012984 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Software |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012984 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Software |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012984 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Software |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000465 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Algorithms |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012984 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Software |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000465 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Algorithms |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000069550 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Machine Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D012984 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Software |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000069550 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Machine Learning |
| type | article |
| title | RetroCaptioner: beyond attention in end-to-end retrosynthesis transformer via contrastively captioned learnable graph representation |
| awards[0].id | https://openalex.org/G5180699992 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | NSFC 62322215 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2147514142 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62172296 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 9 |
| biblio.volume | 40 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10911 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9743000268936157 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Chemical Synthesis and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid.value | 3618 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3618 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7854722142219543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C118505674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7460161447525024 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[1].display_name | Encoder |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7312042117118835 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5264977812767029 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4423753619194031 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3846437335014343 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3067975640296936 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.10042393207550049 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| concepts[9].id | https://openalex.org/C165801399 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[9].display_name | Voltage |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7854722142219543 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/encoder |
| keywords[1].score | 0.7460161447525024 |
| keywords[1].display_name | Encoder |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.7312042117118835 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5264977812767029 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.4423753619194031 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.3846437335014343 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.3067975640296936 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.10042393207550049 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btae561 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btae561 |
| locations[1].id | pmid:39342389 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39342389 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11520410 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioinformatics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11520410 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5112110529 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-6395-5318 |
| authorships[0].author.display_name | Xiaoyi Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I17747738 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing, 102488, |
| authorships[0].affiliations[1].raw_affiliation_string | Ministry of Education, Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Beijing, 100102, |
| authorships[0].institutions[0].id | https://openalex.org/I17747738 |
| authorships[0].institutions[0].ror | https://ror.org/05damtm70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I17747738 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Chinese Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoyi Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Ministry of Education, Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Beijing, 100102,, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing, 102488, |
| authorships[1].author.id | https://openalex.org/A5018156666 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1314-660X |
| authorships[1].author.display_name | Chengwei Ai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer Science and Engineering, Central South University , Changsha, 410083, |
| authorships[1].institutions[0].id | https://openalex.org/I139660479 |
| authorships[1].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Central South University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chengwei Ai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer Science and Engineering, Central South University , Changsha, 410083, |
| authorships[2].author.id | https://openalex.org/A5081832999 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hongpeng Yang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[2].affiliations[0].raw_affiliation_string | Computer Science and Engineering, University of South Carolina , Columbia, South Carolina, 29208, |
| authorships[2].institutions[0].id | https://openalex.org/I155781252 |
| authorships[2].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of South Carolina |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongpeng Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computer Science and Engineering, University of South Carolina , Columbia, South Carolina, 29208, |
| authorships[3].author.id | https://openalex.org/A5101401993 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-5862-8410 |
| authorships[3].author.display_name | Ruihan Dong |
| authorships[3].countries | CN, IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210137189 |
| authorships[3].affiliations[0].raw_affiliation_string | Academy for Advanced Interdisciplinary Studies, Peking University , Beijing, 100871, |
| authorships[3].institutions[0].id | https://openalex.org/I20231570 |
| authorships[3].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University |
| authorships[3].institutions[1].id | https://openalex.org/I4210137189 |
| authorships[3].institutions[1].ror | https://ror.org/03whr7s66 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210137189 |
| authorships[3].institutions[1].country_code | IN |
| authorships[3].institutions[1].display_name | Center for Interdisciplinary Studies |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruihan Dong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Academy for Advanced Interdisciplinary Studies, Peking University , Beijing, 100871, |
| authorships[4].author.id | https://openalex.org/A5001619694 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6377-536X |
| authorships[4].author.display_name | Jijun Tang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I180726961, https://openalex.org/I4210152380 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology , Shenzhen, 518055, |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].affiliations[1].raw_affiliation_string | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , Nanshan, 518055, |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[4].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[4].institutions[2].id | https://openalex.org/I4210152380 |
| authorships[4].institutions[2].ror | https://ror.org/04qzpec27 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I4210152380 |
| authorships[4].institutions[2].country_code | CN |
| authorships[4].institutions[2].display_name | Shenzhen Technology University |
| authorships[4].institutions[3].id | https://openalex.org/I180726961 |
| authorships[4].institutions[3].ror | https://ror.org/01vy4gh70 |
| authorships[4].institutions[3].type | education |
| authorships[4].institutions[3].lineage | https://openalex.org/I180726961 |
| authorships[4].institutions[3].country_code | CN |
| authorships[4].institutions[3].display_name | Shenzhen University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jijun Tang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology , Shenzhen, 518055,, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , Nanshan, 518055, |
| authorships[5].author.id | https://openalex.org/A5075817762 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9747-4285 |
| authorships[5].author.display_name | Shuangjia Zheng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[5].affiliations[0].raw_affiliation_string | Global Institute of Future Technology, Shanghai Jiao Tong University , Shanghai, 200240, |
| authorships[5].institutions[0].id | https://openalex.org/I183067930 |
| authorships[5].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shuangjia Zheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Global Institute of Future Technology, Shanghai Jiao Tong University , Shanghai, 200240, |
| authorships[6].author.id | https://openalex.org/A5100702161 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8346-0798 |
| authorships[6].author.display_name | Fei Guo |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[6].affiliations[0].raw_affiliation_string | Computer Science and Engineering, Central South University , Changsha, 410083, |
| authorships[6].institutions[0].id | https://openalex.org/I139660479 |
| authorships[6].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Central South University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Fei Guo |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Computer Science and Engineering, Central South University , Changsha, 410083, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/bioinformatics/btae561 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RetroCaptioner: beyond attention in end-to-end retrosynthesis transformer via contrastively captioned learnable graph representation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4390516098, https://openalex.org/W2181948922, https://openalex.org/W2384362569, https://openalex.org/W2142795561, https://openalex.org/W4205302943, https://openalex.org/W2561132942, https://openalex.org/W3155418658, https://openalex.org/W4243199227, https://openalex.org/W2379948177, https://openalex.org/W2334580170 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bioinformatics/btae561 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btae561 |
| primary_location.id | doi:10.1093/bioinformatics/btae561 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btae561 |
| publication_date | 2024-09-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4378783602, https://openalex.org/W2769756736, https://openalex.org/W2066609840, https://openalex.org/W2147421370, https://openalex.org/W3119022334, https://openalex.org/W4311481273, https://openalex.org/W4392351844, https://openalex.org/W3175633940, https://openalex.org/W2008131878, https://openalex.org/W3181403764, https://openalex.org/W6796873926, https://openalex.org/W3088265803, https://openalex.org/W4286901673, https://openalex.org/W4220670676, https://openalex.org/W6739901393, https://openalex.org/W3152975457, https://openalex.org/W4387297831, https://openalex.org/W1975147762, https://openalex.org/W2968734407, https://openalex.org/W6784819614, https://openalex.org/W6804049574, https://openalex.org/W2994678679, https://openalex.org/W4281697264, https://openalex.org/W4378219995, https://openalex.org/W4229040393, https://openalex.org/W3211394146, https://openalex.org/W3169208069, https://openalex.org/W4385245566, https://openalex.org/W3094771832, https://openalex.org/W4285670373 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 59, 74, 90, 121, 126 |
| abstract_inverted_index.In | 171 |
| abstract_inverted_index.It | 78 |
| abstract_inverted_index.We | 50, 94 |
| abstract_inverted_index.an | 53, 164 |
| abstract_inverted_index.at | 195 |
| abstract_inverted_index.in | 150, 154, 178 |
| abstract_inverted_index.of | 17, 46, 69, 112, 134, 169 |
| abstract_inverted_index.on | 159 |
| abstract_inverted_index.to | 26, 35, 84, 102 |
| abstract_inverted_index.we | 130 |
| abstract_inverted_index.Our | 141 |
| abstract_inverted_index.The | 189 |
| abstract_inverted_index.and | 9, 15, 44, 99, 109, 125, 139, 152, 187, 191 |
| abstract_inverted_index.are | 193 |
| abstract_inverted_index.for | 7, 182 |
| abstract_inverted_index.has | 174 |
| abstract_inverted_index.its | 176 |
| abstract_inverted_index.the | 13, 42, 67, 96, 107, 117, 132, 160, 183 |
| abstract_inverted_index.This | 64, 114 |
| abstract_inverted_index.With | 12 |
| abstract_inverted_index.been | 24 |
| abstract_inverted_index.code | 190 |
| abstract_inverted_index.data | 192 |
| abstract_inverted_index.drug | 184 |
| abstract_inverted_index.from | 106 |
| abstract_inverted_index.fuse | 104 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.into | 120 |
| abstract_inverted_index.many | 31 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.used | 25 |
| abstract_inverted_index.with | 148 |
| abstract_inverted_index.67.2% | 149 |
| abstract_inverted_index.93.4% | 153 |
| abstract_inverted_index.exact | 156 |
| abstract_inverted_index.graph | 82, 110 |
| abstract_inverted_index.novel | 10 |
| abstract_inverted_index.score | 168 |
| abstract_inverted_index.their | 47 |
| abstract_inverted_index.top-1 | 151 |
| abstract_inverted_index.using | 73 |
| abstract_inverted_index.99.4%. | 170 |
| abstract_inverted_index.Center | 62 |
| abstract_inverted_index.SMILES | 138, 166 |
| abstract_inverted_index.atomic | 135 |
| abstract_inverted_index.guides | 66 |
| abstract_inverted_index.models | 21, 72 |
| abstract_inverted_index.routes | 181 |
| abstract_inverted_index.top-10 | 155 |
| abstract_inverted_index.within | 89 |
| abstract_inverted_index.Results | 49 |
| abstract_inverted_index.between | 137 |
| abstract_inverted_index.capture | 37, 85 |
| abstract_inverted_index.encoder | 119, 124 |
| abstract_inverted_index.enhance | 131 |
| abstract_inverted_index.graphs. | 140 |
| abstract_inverted_index.learned | 80 |
| abstract_inverted_index.matched | 157 |
| abstract_inverted_index.method, | 143 |
| abstract_inverted_index.methods | 33 |
| abstract_inverted_index.models, | 19 |
| abstract_inverted_index.module. | 128 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.Reaction | 61 |
| abstract_inverted_index.accuracy | 43, 158 |
| abstract_inverted_index.achieved | 145 |
| abstract_inverted_index.advanced | 54 |
| abstract_inverted_index.automate | 27 |
| abstract_inverted_index.dataset, | 162 |
| abstract_inverted_index.existing | 32 |
| abstract_inverted_index.involves | 115 |
| abstract_inverted_index.language | 18 |
| abstract_inverted_index.learning | 76, 92 |
| abstract_inverted_index.limiting | 41 |
| abstract_inverted_index.process. | 29, 93 |
| abstract_inverted_index.proposed | 142 |
| abstract_inverted_index.reaction | 38 |
| abstract_inverted_index.sequence | 108, 123 |
| abstract_inverted_index.struggle | 34 |
| abstract_inverted_index.training | 68 |
| abstract_inverted_index.uni-view | 122 |
| abstract_inverted_index.validity | 167 |
| abstract_inverted_index.USPTO-50k | 161 |
| abstract_inverted_index.addition, | 172 |
| abstract_inverted_index.alongside | 163 |
| abstract_inverted_index.approach. | 77 |
| abstract_inverted_index.attention | 71 |
| abstract_inverted_index.available | 4, 194 |
| abstract_inverted_index.captioner | 65 |
| abstract_inverted_index.dual-view | 70, 127 |
| abstract_inverted_index.featuring | 58 |
| abstract_inverted_index.framework | 57 |
| abstract_inverted_index.integrate | 95 |
| abstract_inverted_index.introduce | 51 |
| abstract_inverted_index.leverages | 79 |
| abstract_inverted_index.modifying | 116 |
| abstract_inverted_index.molecular | 81 |
| abstract_inverted_index.molecules | 6 |
| abstract_inverted_index.paradigms | 101 |
| abstract_inverted_index.plausible | 87 |
| abstract_inverted_index.precursor | 5 |
| abstract_inverted_index.synthetic | 180 |
| abstract_inverted_index.Captioner. | 63 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.captioning | 133 |
| abstract_inverted_index.chemically | 86 |
| abstract_inverted_index.compounds. | 11 |
| abstract_inverted_index.generating | 179 |
| abstract_inverted_index.identifies | 3 |
| abstract_inverted_index.molecules. | 113 |
| abstract_inverted_index.Contrastive | 60 |
| abstract_inverted_index.Transformer | 118 |
| abstract_inverted_index.constraints | 88 |
| abstract_inverted_index.contrastive | 75 |
| abstract_inverted_index.effectively | 103 |
| abstract_inverted_index.efficiently | 36 |
| abstract_inverted_index.end-to-end, | 55 |
| abstract_inverted_index.exceptional | 165 |
| abstract_inverted_index.information | 105 |
| abstract_inverted_index.outstanding | 146 |
| abstract_inverted_index.performance | 147 |
| abstract_inverted_index.protokylol. | 185 |
| abstract_inverted_index.reliability | 177 |
| abstract_inverted_index.single-step | 91 |
| abstract_inverted_index.Availability | 186 |
| abstract_inverted_index.Furthermore, | 129 |
| abstract_inverted_index.advancements | 14 |
| abstract_inverted_index.demonstrated | 175 |
| abstract_inverted_index.increasingly | 23 |
| abstract_inverted_index.information, | 40 |
| abstract_inverted_index.practicality | 16 |
| abstract_inverted_index.predictions. | 48 |
| abstract_inverted_index.applicability | 45 |
| abstract_inverted_index.dual-encoder, | 98 |
| abstract_inverted_index.RetroCaptioner | 173 |
| abstract_inverted_index.Retrosynthesis | 2 |
| abstract_inverted_index.correspondence | 136 |
| abstract_inverted_index.implementation | 188 |
| abstract_inverted_index.transformation | 39 |
| abstract_inverted_index.RetroCaptioner, | 52, 144 |
| abstract_inverted_index.representations | 83, 111 |
| abstract_inverted_index.single-encoder, | 97 |
| abstract_inverted_index.Transformer-based | 20, 56 |
| abstract_inverted_index.encoder–decoder | 100 |
| abstract_inverted_index.https://github.com/guofei-tju/RetroCaptioner. | 196 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.96354384 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |