Return and Volatility Forecasting Using On-Chain Flows in Cryptocurrency Markets Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.06327
We empirically examine the intraday return- and volatility-forecasting power of on-chain flow data for Bitcoin(BTC), Ethereum(ETH), and Tether(USDT). We find ETH net inflows to strongly predict ETH returns and volatility in the 2017-2023 period. Our intraday frequencies are 1-6 hours. We find that differing significantly from forecasting patterns for BTC, ETH net inflows negatively predict ETH returns and volatility. First, we find that USDT flowing out of investors wallets and into cryptocurrency exchanges, namely, USDT net inflows into the exchanges, positively predicts BTC and ETH returns at multiple intervals and negatively predicts ETH volatility at various intervals and BTC volatility at the 6-hour interval. Second, we find that ETH net inflows negatively predict ETH returns and volatility for all intraday intervals. Third, BTC net inflows generally lack predictive power for BTC returns(except at 4 hours) but are negatively associated with volatility across all intraday intervals. We illustrate our findings on return forecasting via case studies. Moreover, we develop option strategies to assess profits and losses on ETH investments based on ETH net inflows. Our findings contribute to the growing literature on on-chain activity and its asset pricing implications, offering economically relevant insights for intraday portfolio management in cryptocurrency markets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.06327
- https://arxiv.org/pdf/2411.06327
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404401067
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404401067Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.06327Digital Object Identifier
- Title
-
Return and Volatility Forecasting Using On-Chain Flows in Cryptocurrency MarketsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-10Full publication date if available
- Authors
-
Yeguang Chi, Qionghua, Amanda M. Y. Chu, Wenyan HaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.06327Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.06327Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.06327Direct OA link when available
- Concepts
-
Cryptocurrency, Volatility (finance), Econometrics, Economics, Financial economics, Realized variance, Business, Computer science, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404401067 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.06327 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.06327 |
| ids.openalex | https://openalex.org/W4404401067 |
| fwci | |
| type | preprint |
| title | Return and Volatility Forecasting Using On-Chain Flows in Cryptocurrency Markets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10270 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9348999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Blockchain Technology Applications and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C180706569 |
| concepts[0].level | 2 |
| concepts[0].score | 0.913001298904419 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q13479982 |
| concepts[0].display_name | Cryptocurrency |
| concepts[1].id | https://openalex.org/C91602232 |
| concepts[1].level | 2 |
| concepts[1].score | 0.728295624256134 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q756115 |
| concepts[1].display_name | Volatility (finance) |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.507300078868866 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C162324750 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5065284967422485 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[3].display_name | Economics |
| concepts[4].id | https://openalex.org/C106159729 |
| concepts[4].level | 1 |
| concepts[4].score | 0.47881776094436646 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[4].display_name | Financial economics |
| concepts[5].id | https://openalex.org/C60092789 |
| concepts[5].level | 3 |
| concepts[5].score | 0.42447629570961 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7301291 |
| concepts[5].display_name | Realized variance |
| concepts[6].id | https://openalex.org/C144133560 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3445795476436615 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[6].display_name | Business |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.20009037852287292 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.06091725826263428 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/cryptocurrency |
| keywords[0].score | 0.913001298904419 |
| keywords[0].display_name | Cryptocurrency |
| keywords[1].id | https://openalex.org/keywords/volatility |
| keywords[1].score | 0.728295624256134 |
| keywords[1].display_name | Volatility (finance) |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.507300078868866 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/economics |
| keywords[3].score | 0.5065284967422485 |
| keywords[3].display_name | Economics |
| keywords[4].id | https://openalex.org/keywords/financial-economics |
| keywords[4].score | 0.47881776094436646 |
| keywords[4].display_name | Financial economics |
| keywords[5].id | https://openalex.org/keywords/realized-variance |
| keywords[5].score | 0.42447629570961 |
| keywords[5].display_name | Realized variance |
| keywords[6].id | https://openalex.org/keywords/business |
| keywords[6].score | 0.3445795476436615 |
| keywords[6].display_name | Business |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.20009037852287292 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.06091725826263428 |
| keywords[8].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.06327 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.06327 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.06327 |
| locations[1].id | doi:10.48550/arxiv.2411.06327 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.06327 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089661799 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4478-3049 |
| authorships[0].author.display_name | Yeguang Chi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chi, Yeguang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114656903 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qionghua |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qionghua |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069990345 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9543-747X |
| authorships[2].author.display_name | Amanda M. Y. Chu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5052568267 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wenyan Hao |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hao, Wenyan |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.06327 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-15T00:00:00 |
| display_name | Return and Volatility Forecasting Using On-Chain Flows in Cryptocurrency Markets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10270 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9348999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Blockchain Technology Applications and Security |
| related_works | https://openalex.org/W4394826704, https://openalex.org/W3126007505, https://openalex.org/W2753588648, https://openalex.org/W2044646743, https://openalex.org/W2528930360, https://openalex.org/W2125646610, https://openalex.org/W4388417379, https://openalex.org/W2000184509, https://openalex.org/W2085642832, https://openalex.org/W2149373347 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.06327 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.06327 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.06327 |
| primary_location.id | pmh:oai:arXiv.org:2411.06327 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.06327 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.06327 |
| publication_date | 2024-11-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 133 |
| abstract_inverted_index.We | 0, 18, 40, 145 |
| abstract_inverted_index.at | 86, 94, 100, 132 |
| abstract_inverted_index.in | 30, 196 |
| abstract_inverted_index.of | 9, 66 |
| abstract_inverted_index.on | 149, 165, 169, 180 |
| abstract_inverted_index.to | 23, 160, 176 |
| abstract_inverted_index.we | 60, 105, 156 |
| abstract_inverted_index.1-6 | 38 |
| abstract_inverted_index.BTC | 82, 98, 122, 130 |
| abstract_inverted_index.ETH | 20, 26, 50, 55, 84, 92, 108, 113, 166, 170 |
| abstract_inverted_index.Our | 34, 173 |
| abstract_inverted_index.all | 118, 142 |
| abstract_inverted_index.and | 6, 16, 28, 57, 69, 83, 89, 97, 115, 163, 183 |
| abstract_inverted_index.are | 37, 136 |
| abstract_inverted_index.but | 135 |
| abstract_inverted_index.for | 13, 48, 117, 129, 192 |
| abstract_inverted_index.its | 184 |
| abstract_inverted_index.net | 21, 51, 75, 109, 123, 171 |
| abstract_inverted_index.our | 147 |
| abstract_inverted_index.out | 65 |
| abstract_inverted_index.the | 3, 31, 78, 101, 177 |
| abstract_inverted_index.via | 152 |
| abstract_inverted_index.BTC, | 49 |
| abstract_inverted_index.USDT | 63, 74 |
| abstract_inverted_index.case | 153 |
| abstract_inverted_index.data | 12 |
| abstract_inverted_index.find | 19, 41, 61, 106 |
| abstract_inverted_index.flow | 11 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.into | 70, 77 |
| abstract_inverted_index.lack | 126 |
| abstract_inverted_index.that | 42, 62, 107 |
| abstract_inverted_index.with | 139 |
| abstract_inverted_index.asset | 185 |
| abstract_inverted_index.based | 168 |
| abstract_inverted_index.power | 8, 128 |
| abstract_inverted_index.6-hour | 102 |
| abstract_inverted_index.First, | 59 |
| abstract_inverted_index.Third, | 121 |
| abstract_inverted_index.across | 141 |
| abstract_inverted_index.assess | 161 |
| abstract_inverted_index.hours) | 134 |
| abstract_inverted_index.hours. | 39 |
| abstract_inverted_index.losses | 164 |
| abstract_inverted_index.option | 158 |
| abstract_inverted_index.return | 150 |
| abstract_inverted_index.Second, | 104 |
| abstract_inverted_index.develop | 157 |
| abstract_inverted_index.examine | 2 |
| abstract_inverted_index.flowing | 64 |
| abstract_inverted_index.growing | 178 |
| abstract_inverted_index.inflows | 22, 52, 76, 110, 124 |
| abstract_inverted_index.namely, | 73 |
| abstract_inverted_index.period. | 33 |
| abstract_inverted_index.predict | 25, 54, 112 |
| abstract_inverted_index.pricing | 186 |
| abstract_inverted_index.profits | 162 |
| abstract_inverted_index.return- | 5 |
| abstract_inverted_index.returns | 27, 56, 85, 114 |
| abstract_inverted_index.various | 95 |
| abstract_inverted_index.wallets | 68 |
| abstract_inverted_index.activity | 182 |
| abstract_inverted_index.findings | 148, 174 |
| abstract_inverted_index.inflows. | 172 |
| abstract_inverted_index.insights | 191 |
| abstract_inverted_index.intraday | 4, 35, 119, 143, 193 |
| abstract_inverted_index.markets. | 198 |
| abstract_inverted_index.multiple | 87 |
| abstract_inverted_index.offering | 188 |
| abstract_inverted_index.on-chain | 10, 181 |
| abstract_inverted_index.patterns | 47 |
| abstract_inverted_index.predicts | 81, 91 |
| abstract_inverted_index.relevant | 190 |
| abstract_inverted_index.strongly | 24 |
| abstract_inverted_index.studies. | 154 |
| abstract_inverted_index.2017-2023 | 32 |
| abstract_inverted_index.Moreover, | 155 |
| abstract_inverted_index.differing | 43 |
| abstract_inverted_index.generally | 125 |
| abstract_inverted_index.interval. | 103 |
| abstract_inverted_index.intervals | 88, 96 |
| abstract_inverted_index.investors | 67 |
| abstract_inverted_index.portfolio | 194 |
| abstract_inverted_index.associated | 138 |
| abstract_inverted_index.contribute | 175 |
| abstract_inverted_index.exchanges, | 72, 79 |
| abstract_inverted_index.illustrate | 146 |
| abstract_inverted_index.intervals. | 120, 144 |
| abstract_inverted_index.literature | 179 |
| abstract_inverted_index.management | 195 |
| abstract_inverted_index.negatively | 53, 90, 111, 137 |
| abstract_inverted_index.positively | 80 |
| abstract_inverted_index.predictive | 127 |
| abstract_inverted_index.strategies | 159 |
| abstract_inverted_index.volatility | 29, 93, 99, 116, 140 |
| abstract_inverted_index.empirically | 1 |
| abstract_inverted_index.forecasting | 46, 151 |
| abstract_inverted_index.frequencies | 36 |
| abstract_inverted_index.investments | 167 |
| abstract_inverted_index.volatility. | 58 |
| abstract_inverted_index.economically | 189 |
| abstract_inverted_index.Bitcoin(BTC), | 14 |
| abstract_inverted_index.Tether(USDT). | 17 |
| abstract_inverted_index.implications, | 187 |
| abstract_inverted_index.significantly | 44 |
| abstract_inverted_index.Ethereum(ETH), | 15 |
| abstract_inverted_index.cryptocurrency | 71, 197 |
| abstract_inverted_index.returns(except | 131 |
| abstract_inverted_index.volatility-forecasting | 7 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |