Revealing motor behavior patterns and functional improvement trajectories following spinal cord injury using unsupervised machine learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.10.31.564826
Spinal cord injury (SCI) disrupts motor function, with recovery involving complex adaptive motor behaviors that cannot be fully assessed with traditional manual recovery assessments and their predefined recovery criteria. To move beyond these constraints, we employed motion sequencing (MoSeq), a machine learning-driven framework that automatically segments freely moving mouse behavior into discrete, repeated behavioral “syllables”, effectively capturing entire behavioral repertoires and dynamic behavioral sequences observed throughout SCI recovery. We observed that functional improvements involved the reemergence of preinjury behaviors, emergence of adaptive behaviors, and subtle individual differences between mice. Interestingly, the temporal organization of behavioral sequences evolved consistently across injury severities, suggesting a ceiling effect in sequence reorganization. MoSeq syllables also correlated with the Basso Mouse Scale (BMS) and outperformed BMS in correlation to several injury-related histological findings. We also introduced the “Recovery Score,” a new metric derived from aggregated MoSeq data that quantifies recovery based on syllable usage patterns. The Recovery Score identified clusters of syllables with high usages, which highlights the potential of using hallmark syllables as behavioral biomarkers for assessing recovery and informing therapies. Future research should incorporate more complex experimental designs to refine this aggregation approach and advance the pursuit of a new gold standard in recovery assessment.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.10.31.564826
- https://www.biorxiv.org/content/biorxiv/early/2023/11/05/2023.10.31.564826.full.pdf
- OA Status
- green
- Cited By
- 3
- References
- 124
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388211385
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388211385Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.10.31.564826Digital Object Identifier
- Title
-
Revealing motor behavior patterns and functional improvement trajectories following spinal cord injury using unsupervised machine learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-02Full publication date if available
- Authors
-
Jaclyn T. Eisdorfer, J. Thackray, Thomas Theis, Ana L. Vivinetto, Matthew T Ricci, Sherry Lin, Olisemeka Oputa, A Martínez, Hannah D. Nacht, Monica Tschang, Malaika Mahmood, Ashley Tucker, Manon Bohic, Shailee Pusuloori, Lance Zmoyro, Suneel Kumar, Melitta Schachner, Phillip G. Popovich, Adam R. Ferguson, Dana M. McTigue, Vicki M. Tysseling, Jennifer N. Dulin, Edmund Hollis, Sandeep Robert Datta, Victoria E. AbrairaList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.10.31.564826Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/11/05/2023.10.31.564826.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/11/05/2023.10.31.564826.full.pdfDirect OA link when available
- Concepts
-
Spinal cord injury, Behavioral pattern, Computer science, Psychology, Neuroscience, Physical medicine and rehabilitation, Cognitive psychology, Artificial intelligence, Machine learning, Medicine, Spinal cord, Software engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
124Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388211385 |
|---|---|
| doi | https://doi.org/10.1101/2023.10.31.564826 |
| ids.doi | https://doi.org/10.1101/2023.10.31.564826 |
| ids.openalex | https://openalex.org/W4388211385 |
| fwci | 1.14643313 |
| type | preprint |
| title | Revealing motor behavior patterns and functional improvement trajectories following spinal cord injury using unsupervised machine learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10925 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2734 |
| topics[0].subfield.display_name | Pathology and Forensic Medicine |
| topics[0].display_name | Spinal Cord Injury Research |
| topics[1].id | https://openalex.org/T11833 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9819999933242798 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Spinal Dysraphism and Malformations |
| topics[2].id | https://openalex.org/T10618 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9783999919891357 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Aortic Disease and Treatment Approaches |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778334475 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5129639506340027 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1415275 |
| concepts[0].display_name | Spinal cord injury |
| concepts[1].id | https://openalex.org/C83804111 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4981551170349121 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1063558 |
| concepts[1].display_name | Behavioral pattern |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.48045843839645386 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4390902817249298 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C169760540 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4055023193359375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[4].display_name | Neuroscience |
| concepts[5].id | https://openalex.org/C99508421 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3437107801437378 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[5].display_name | Physical medicine and rehabilitation |
| concepts[6].id | https://openalex.org/C180747234 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3433181047439575 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[6].display_name | Cognitive psychology |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3429066836833954 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3306843638420105 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3132408857345581 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C2780775167 |
| concepts[10].level | 2 |
| concepts[10].score | 0.30674076080322266 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9606 |
| concepts[10].display_name | Spinal cord |
| concepts[11].id | https://openalex.org/C115903868 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[11].display_name | Software engineering |
| keywords[0].id | https://openalex.org/keywords/spinal-cord-injury |
| keywords[0].score | 0.5129639506340027 |
| keywords[0].display_name | Spinal cord injury |
| keywords[1].id | https://openalex.org/keywords/behavioral-pattern |
| keywords[1].score | 0.4981551170349121 |
| keywords[1].display_name | Behavioral pattern |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.48045843839645386 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.4390902817249298 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/neuroscience |
| keywords[4].score | 0.4055023193359375 |
| keywords[4].display_name | Neuroscience |
| keywords[5].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[5].score | 0.3437107801437378 |
| keywords[5].display_name | Physical medicine and rehabilitation |
| keywords[6].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[6].score | 0.3433181047439575 |
| keywords[6].display_name | Cognitive psychology |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3429066836833954 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3306843638420105 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.3132408857345581 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/spinal-cord |
| keywords[10].score | 0.30674076080322266 |
| keywords[10].display_name | Spinal cord |
| language | en |
| locations[0].id | doi:10.1101/2023.10.31.564826 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/05/2023.10.31.564826.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.10.31.564826 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5085468005 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3285-3473 |
| authorships[0].author.display_name | Jaclyn T. Eisdorfer |
| authorships[0].countries | BR, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[0].affiliations[0].raw_affiliation_string | Rutgers, The State University of New Jersey |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210116875 |
| authorships[0].affiliations[1].raw_affiliation_string | AstraZeneca |
| authorships[0].institutions[0].id | https://openalex.org/I4210116875 |
| authorships[0].institutions[0].ror | https://ror.org/026m9xy48 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210116875 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | AstraZeneca (Brazil) |
| authorships[0].institutions[1].id | https://openalex.org/I102322142 |
| authorships[0].institutions[1].ror | https://ror.org/05vt9qd57 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I102322142 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Rutgers, The State University of New Jersey |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jaclyn T Eisdorfer |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | AstraZeneca, Rutgers, The State University of New Jersey |
| authorships[1].author.id | https://openalex.org/A5109651990 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | J. Thackray |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[1].affiliations[0].raw_affiliation_string | Rutgers, The State University of New Jersey |
| authorships[1].institutions[0].id | https://openalex.org/I102322142 |
| authorships[1].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Josh Thackray |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Rutgers, The State University of New Jersey |
| authorships[2].author.id | https://openalex.org/A5045905555 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5555-8501 |
| authorships[2].author.display_name | Thomas Theis |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210116875 |
| authorships[2].affiliations[0].raw_affiliation_string | AstraZeneca |
| authorships[2].institutions[0].id | https://openalex.org/I4210116875 |
| authorships[2].institutions[0].ror | https://ror.org/026m9xy48 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210116875 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | AstraZeneca (Brazil) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thomas Theis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | AstraZeneca |
| authorships[3].author.id | https://openalex.org/A5087741650 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5054-6974 |
| authorships[3].author.display_name | Ana L. Vivinetto |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[3].affiliations[0].raw_affiliation_string | Burke Neurological Institute/Weill Cornell Medicine |
| authorships[3].institutions[0].id | https://openalex.org/I205783295 |
| authorships[3].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Cornell University |
| authorships[3].institutions[1].id | https://openalex.org/I4387153466 |
| authorships[3].institutions[1].ror | https://ror.org/02r109517 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Weill Cornell Medicine |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ana Vivinetto |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Burke Neurological Institute/Weill Cornell Medicine |
| authorships[4].author.id | https://openalex.org/A5109651991 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Matthew T Ricci |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I175594653 |
| authorships[4].affiliations[0].raw_affiliation_string | Brown University |
| authorships[4].institutions[0].id | https://openalex.org/I175594653 |
| authorships[4].institutions[0].ror | https://ror.org/02ct41q97 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I175594653 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | John Brown University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Matthew T Ricci |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Brown University |
| authorships[5].author.id | https://openalex.org/A5053312726 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1275-8391 |
| authorships[5].author.display_name | Sherry Lin |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[5].affiliations[0].raw_affiliation_string | Harvard Medical School |
| authorships[5].institutions[0].id | https://openalex.org/I136199984 |
| authorships[5].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Harvard University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sherry Lin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Harvard Medical School |
| authorships[6].author.id | https://openalex.org/A5092576542 |
| authorships[6].author.orcid | https://orcid.org/0009-0006-6793-9882 |
| authorships[6].author.display_name | Olisemeka Oputa |
| authorships[6].affiliations[0].raw_affiliation_string | Northwestern University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Olisemeka Oputa |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Northwestern University |
| authorships[7].author.id | https://openalex.org/A5102939519 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7197-1520 |
| authorships[7].author.display_name | A Martínez |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[7].affiliations[0].raw_affiliation_string | Rutgers, The State University of New Jersey |
| authorships[7].institutions[0].id | https://openalex.org/I102322142 |
| authorships[7].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Alana M Martinez |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Rutgers, The State University of New Jersey |
| authorships[8].author.id | https://openalex.org/A5092576541 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Hannah D. Nacht |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[8].affiliations[0].raw_affiliation_string | Rutgers, The State University of New Jersey |
| authorships[8].institutions[0].id | https://openalex.org/I102322142 |
| authorships[8].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Hannah D Nacht |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Rutgers, The State University of New Jersey |
| authorships[9].author.id | https://openalex.org/A5034378543 |
| authorships[9].author.orcid | https://orcid.org/0009-0003-0721-6680 |
| authorships[9].author.display_name | Monica Tschang |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[9].affiliations[0].raw_affiliation_string | University of Washington |
| authorships[9].institutions[0].id | https://openalex.org/I201448701 |
| authorships[9].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of Washington |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Monica Tschang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | University of Washington |
| authorships[10].author.id | https://openalex.org/A5022756988 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-5611-4742 |
| authorships[10].author.display_name | Malaika Mahmood |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I36788626 |
| authorships[10].affiliations[0].raw_affiliation_string | University of Pennsylvania |
| authorships[10].institutions[0].id | https://openalex.org/I36788626 |
| authorships[10].institutions[0].ror | https://ror.org/01spssf70 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I36788626 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | California University of Pennsylvania |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Malaika Mahmood |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | University of Pennsylvania |
| authorships[11].author.id | https://openalex.org/A5019211592 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-8661-5417 |
| authorships[11].author.display_name | Ashley Tucker |
| authorships[11].affiliations[0].raw_affiliation_string | Texas A M |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Ashley Tucker |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Texas A M |
| authorships[12].author.id | https://openalex.org/A5045780041 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-4400-8314 |
| authorships[12].author.display_name | Manon Bohic |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I4210167031 |
| authorships[12].affiliations[0].raw_affiliation_string | Ohio State |
| authorships[12].institutions[0].id | https://openalex.org/I4210167031 |
| authorships[12].institutions[0].ror | https://ror.org/03fwsh914 |
| authorships[12].institutions[0].type | archive |
| authorships[12].institutions[0].lineage | https://openalex.org/I4210167031 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | State Library of Ohio |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Manon Bohic |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Ohio State |
| authorships[13].author.id | https://openalex.org/A5097137908 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Shailee Pusuloori |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[13].affiliations[0].raw_affiliation_string | Rutgers, The State University of New Jersey |
| authorships[13].institutions[0].id | https://openalex.org/I102322142 |
| authorships[13].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Shailee Pusuloori |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Rutgers, The State University of New Jersey |
| authorships[14].author.id | https://openalex.org/A5097194478 |
| authorships[14].author.orcid | |
| authorships[14].author.display_name | Lance Zmoyro |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[14].affiliations[0].raw_affiliation_string | Rutgers, The State University of New Jersey |
| authorships[14].institutions[0].id | https://openalex.org/I102322142 |
| authorships[14].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[14].institutions[0].type | education |
| authorships[14].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Lance Zmoyro |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Rutgers, The State University of New Jersey |
| authorships[15].author.id | https://openalex.org/A5088013744 |
| authorships[15].author.orcid | https://orcid.org/0000-0003-3920-1005 |
| authorships[15].author.display_name | Suneel Kumar |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Suneel Kumar |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5102736340 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-3316-0778 |
| authorships[16].author.display_name | Melitta Schachner |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Melitta Schachner |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5012696999 |
| authorships[17].author.orcid | https://orcid.org/0000-0003-1329-7395 |
| authorships[17].author.display_name | Phillip G. Popovich |
| authorships[17].countries | US |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I4210167031 |
| authorships[17].affiliations[0].raw_affiliation_string | Ohio State |
| authorships[17].institutions[0].id | https://openalex.org/I4210167031 |
| authorships[17].institutions[0].ror | https://ror.org/03fwsh914 |
| authorships[17].institutions[0].type | archive |
| authorships[17].institutions[0].lineage | https://openalex.org/I4210167031 |
| authorships[17].institutions[0].country_code | US |
| authorships[17].institutions[0].display_name | State Library of Ohio |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Phillip Popovich |
| authorships[17].is_corresponding | False |
| authorships[17].raw_affiliation_strings | Ohio State |
| authorships[18].author.id | https://openalex.org/A5019326045 |
| authorships[18].author.orcid | https://orcid.org/0000-0001-7102-1608 |
| authorships[18].author.display_name | Adam R. Ferguson |
| authorships[18].countries | US |
| authorships[18].affiliations[0].institution_ids | https://openalex.org/I180670191 |
| authorships[18].affiliations[0].raw_affiliation_string | University of California San Francisco (UCSF) |
| authorships[18].institutions[0].id | https://openalex.org/I180670191 |
| authorships[18].institutions[0].ror | https://ror.org/043mz5j54 |
| authorships[18].institutions[0].type | education |
| authorships[18].institutions[0].lineage | https://openalex.org/I180670191 |
| authorships[18].institutions[0].country_code | US |
| authorships[18].institutions[0].display_name | University of California, San Francisco |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Adam R. Ferguson |
| authorships[18].is_corresponding | False |
| authorships[18].raw_affiliation_strings | University of California San Francisco (UCSF) |
| authorships[19].author.id | https://openalex.org/A5041415357 |
| authorships[19].author.orcid | https://orcid.org/0000-0001-7066-9701 |
| authorships[19].author.display_name | Dana M. McTigue |
| authorships[19].countries | US |
| authorships[19].affiliations[0].institution_ids | https://openalex.org/I4210167031 |
| authorships[19].affiliations[0].raw_affiliation_string | Ohio State |
| authorships[19].institutions[0].id | https://openalex.org/I4210167031 |
| authorships[19].institutions[0].ror | https://ror.org/03fwsh914 |
| authorships[19].institutions[0].type | archive |
| authorships[19].institutions[0].lineage | https://openalex.org/I4210167031 |
| authorships[19].institutions[0].country_code | US |
| authorships[19].institutions[0].display_name | State Library of Ohio |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Dana McTigue |
| authorships[19].is_corresponding | False |
| authorships[19].raw_affiliation_strings | Ohio State |
| authorships[20].author.id | https://openalex.org/A5087362727 |
| authorships[20].author.orcid | https://orcid.org/0000-0003-0024-5721 |
| authorships[20].author.display_name | Vicki M. Tysseling |
| authorships[20].affiliations[0].raw_affiliation_string | Northwestern University |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Vicki M Tysseling |
| authorships[20].is_corresponding | False |
| authorships[20].raw_affiliation_strings | Northwestern University |
| authorships[21].author.id | https://openalex.org/A5024854606 |
| authorships[21].author.orcid | https://orcid.org/0000-0001-5767-4290 |
| authorships[21].author.display_name | Jennifer N. Dulin |
| authorships[21].affiliations[0].raw_affiliation_string | Texas A M |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Jennifer Dulin |
| authorships[21].is_corresponding | False |
| authorships[21].raw_affiliation_strings | Texas A M |
| authorships[22].author.id | https://openalex.org/A5057939325 |
| authorships[22].author.orcid | https://orcid.org/0000-0002-4535-4668 |
| authorships[22].author.display_name | Edmund Hollis |
| authorships[22].countries | US |
| authorships[22].affiliations[0].institution_ids | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[22].affiliations[0].raw_affiliation_string | Burke Neurological Institute/Weill Cornell Medicine |
| authorships[22].institutions[0].id | https://openalex.org/I205783295 |
| authorships[22].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[22].institutions[0].type | education |
| authorships[22].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[22].institutions[0].country_code | US |
| authorships[22].institutions[0].display_name | Cornell University |
| authorships[22].institutions[1].id | https://openalex.org/I4387153466 |
| authorships[22].institutions[1].ror | https://ror.org/02r109517 |
| authorships[22].institutions[1].type | education |
| authorships[22].institutions[1].lineage | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[22].institutions[1].country_code | US |
| authorships[22].institutions[1].display_name | Weill Cornell Medicine |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Edmund Hollis |
| authorships[22].is_corresponding | False |
| authorships[22].raw_affiliation_strings | Burke Neurological Institute/Weill Cornell Medicine |
| authorships[23].author.id | https://openalex.org/A5000350952 |
| authorships[23].author.orcid | https://orcid.org/0000-0002-8068-3862 |
| authorships[23].author.display_name | Sandeep Robert Datta |
| authorships[23].countries | US |
| authorships[23].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[23].affiliations[0].raw_affiliation_string | Harvard Medical School |
| authorships[23].institutions[0].id | https://openalex.org/I136199984 |
| authorships[23].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[23].institutions[0].type | education |
| authorships[23].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[23].institutions[0].country_code | US |
| authorships[23].institutions[0].display_name | Harvard University |
| authorships[23].author_position | middle |
| authorships[23].raw_author_name | Sandeep Robert Datta |
| authorships[23].is_corresponding | False |
| authorships[23].raw_affiliation_strings | Harvard Medical School |
| authorships[24].author.id | https://openalex.org/A5021007364 |
| authorships[24].author.orcid | https://orcid.org/0000-0001-9936-9921 |
| authorships[24].author.display_name | Victoria E. Abraira |
| authorships[24].countries | US |
| authorships[24].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[24].affiliations[0].raw_affiliation_string | Rutgers, The State University of New Jersey |
| authorships[24].institutions[0].id | https://openalex.org/I102322142 |
| authorships[24].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[24].institutions[0].type | education |
| authorships[24].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[24].institutions[0].country_code | US |
| authorships[24].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[24].author_position | last |
| authorships[24].raw_author_name | Victoria E Abraira |
| authorships[24].is_corresponding | False |
| authorships[24].raw_affiliation_strings | Rutgers, The State University of New Jersey |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/05/2023.10.31.564826.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-03T00:00:00 |
| display_name | Revealing motor behavior patterns and functional improvement trajectories following spinal cord injury using unsupervised machine learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10925 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2734 |
| primary_topic.subfield.display_name | Pathology and Forensic Medicine |
| primary_topic.display_name | Spinal Cord Injury Research |
| related_works | https://openalex.org/W2001086120, https://openalex.org/W2043188193, https://openalex.org/W1975416403, https://openalex.org/W2046365012, https://openalex.org/W2073700217, https://openalex.org/W2055495577, https://openalex.org/W2386002113, https://openalex.org/W3034714285, https://openalex.org/W2382449071, https://openalex.org/W2053964517 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2023.10.31.564826 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/05/2023.10.31.564826.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.10.31.564826 |
| primary_location.id | doi:10.1101/2023.10.31.564826 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/05/2023.10.31.564826.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.10.31.564826 |
| publication_date | 2023-11-02 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1963586813, https://openalex.org/W4200399668, https://openalex.org/W2077739433, https://openalex.org/W2123015472, https://openalex.org/W2555318669, https://openalex.org/W3082338846, https://openalex.org/W4293175915, https://openalex.org/W1973726191, https://openalex.org/W2170645579, https://openalex.org/W1983325630, https://openalex.org/W3129161572, https://openalex.org/W2010853947, https://openalex.org/W2020380989, https://openalex.org/W1984664722, https://openalex.org/W1998290119, https://openalex.org/W1997603886, https://openalex.org/W2057526171, https://openalex.org/W2027713233, https://openalex.org/W2027647626, https://openalex.org/W2068623814, https://openalex.org/W3197735048, https://openalex.org/W2060108012, https://openalex.org/W2887114371, https://openalex.org/W2950100524, https://openalex.org/W4223962547, https://openalex.org/W2903831537, https://openalex.org/W3087056597, https://openalex.org/W2804636914, https://openalex.org/W4323354665, https://openalex.org/W4321782624, https://openalex.org/W4317390654, https://openalex.org/W4400033882, https://openalex.org/W2991007524, https://openalex.org/W2329818534, https://openalex.org/W3106950657, https://openalex.org/W2762435595, https://openalex.org/W2805407303, https://openalex.org/W2883909900, https://openalex.org/W3196749062, https://openalex.org/W3035915743, https://openalex.org/W2122190640, https://openalex.org/W1996521547, https://openalex.org/W2003381774, https://openalex.org/W2008928532, https://openalex.org/W2551233426, https://openalex.org/W2090141659, https://openalex.org/W1965565623, https://openalex.org/W1970087762, https://openalex.org/W2197602303, https://openalex.org/W2295124130, https://openalex.org/W4392505834, https://openalex.org/W4384029133, https://openalex.org/W4391887351, https://openalex.org/W2117239381, https://openalex.org/W2044805135, https://openalex.org/W2073751266, https://openalex.org/W2067208808, https://openalex.org/W1995875735, https://openalex.org/W4306315062, https://openalex.org/W3031124187, https://openalex.org/W3189374007, https://openalex.org/W2130550225, https://openalex.org/W2126495941, https://openalex.org/W2154545174, https://openalex.org/W2914038977, https://openalex.org/W2013378017, https://openalex.org/W2770090545, https://openalex.org/W2753361193, https://openalex.org/W4360797536, https://openalex.org/W2269214242, https://openalex.org/W2771954128, https://openalex.org/W3217722482, https://openalex.org/W2025500109, https://openalex.org/W1770729033, https://openalex.org/W2070666079, https://openalex.org/W3006731155, https://openalex.org/W1859030572, https://openalex.org/W2127952425, https://openalex.org/W4236706032, https://openalex.org/W2216114677, https://openalex.org/W2948888731, https://openalex.org/W2164994619, https://openalex.org/W2001216342, https://openalex.org/W2791494966, https://openalex.org/W2289996588, https://openalex.org/W2972514463, https://openalex.org/W2012265686, https://openalex.org/W2125043585, https://openalex.org/W2082842350, https://openalex.org/W2142004558, https://openalex.org/W2165304027, https://openalex.org/W2041800999, https://openalex.org/W3045944595, https://openalex.org/W2565833117, https://openalex.org/W2925075625, https://openalex.org/W2006554089, https://openalex.org/W2897249806, https://openalex.org/W2793877036, https://openalex.org/W1984023269, https://openalex.org/W1973825436, https://openalex.org/W1998213544, https://openalex.org/W2002120184, https://openalex.org/W1295550, https://openalex.org/W1985559627, https://openalex.org/W1964169670, https://openalex.org/W4220879764, https://openalex.org/W4229013538, https://openalex.org/W2159052368, https://openalex.org/W2029682834, https://openalex.org/W2033490071, https://openalex.org/W2200834842, https://openalex.org/W4214916449, https://openalex.org/W4400580347, https://openalex.org/W2466314046, https://openalex.org/W4399781483, https://openalex.org/W4281385242, https://openalex.org/W2219858099, https://openalex.org/W4294089543, https://openalex.org/W2398926187, https://openalex.org/W2951092226, https://openalex.org/W4226035633, https://openalex.org/W3040329710, https://openalex.org/W4313227212, https://openalex.org/W2929129033 |
| referenced_works_count | 124 |
| abstract_inverted_index.a | 40, 103, 135, 196 |
| abstract_inverted_index.To | 30 |
| abstract_inverted_index.We | 69, 129 |
| abstract_inverted_index.as | 169 |
| abstract_inverted_index.be | 17 |
| abstract_inverted_index.in | 106, 122, 200 |
| abstract_inverted_index.of | 77, 81, 94, 156, 165, 195 |
| abstract_inverted_index.on | 147 |
| abstract_inverted_index.to | 124, 186 |
| abstract_inverted_index.we | 35 |
| abstract_inverted_index.BMS | 121 |
| abstract_inverted_index.SCI | 67 |
| abstract_inverted_index.The | 151 |
| abstract_inverted_index.and | 25, 61, 84, 119, 175, 191 |
| abstract_inverted_index.for | 172 |
| abstract_inverted_index.new | 136, 197 |
| abstract_inverted_index.the | 75, 91, 114, 132, 163, 193 |
| abstract_inverted_index.also | 111, 130 |
| abstract_inverted_index.cord | 2 |
| abstract_inverted_index.data | 142 |
| abstract_inverted_index.from | 139 |
| abstract_inverted_index.gold | 198 |
| abstract_inverted_index.high | 159 |
| abstract_inverted_index.into | 51 |
| abstract_inverted_index.more | 182 |
| abstract_inverted_index.move | 31 |
| abstract_inverted_index.that | 15, 44, 71, 143 |
| abstract_inverted_index.this | 188 |
| abstract_inverted_index.with | 8, 20, 113, 158 |
| abstract_inverted_index.(BMS) | 118 |
| abstract_inverted_index.(SCI) | 4 |
| abstract_inverted_index.Basso | 115 |
| abstract_inverted_index.MoSeq | 109, 141 |
| abstract_inverted_index.Mouse | 116 |
| abstract_inverted_index.Scale | 117 |
| abstract_inverted_index.Score | 153 |
| abstract_inverted_index.based | 146 |
| abstract_inverted_index.fully | 18 |
| abstract_inverted_index.mice. | 89 |
| abstract_inverted_index.motor | 6, 13 |
| abstract_inverted_index.mouse | 49 |
| abstract_inverted_index.their | 26 |
| abstract_inverted_index.these | 33 |
| abstract_inverted_index.usage | 149 |
| abstract_inverted_index.using | 166 |
| abstract_inverted_index.which | 161 |
| abstract_inverted_index.Future | 178 |
| abstract_inverted_index.Spinal | 1 |
| abstract_inverted_index.across | 99 |
| abstract_inverted_index.beyond | 32 |
| abstract_inverted_index.cannot | 16 |
| abstract_inverted_index.effect | 105 |
| abstract_inverted_index.entire | 58 |
| abstract_inverted_index.freely | 47 |
| abstract_inverted_index.injury | 3, 100 |
| abstract_inverted_index.manual | 22 |
| abstract_inverted_index.metric | 137 |
| abstract_inverted_index.motion | 37 |
| abstract_inverted_index.moving | 48 |
| abstract_inverted_index.refine | 187 |
| abstract_inverted_index.should | 180 |
| abstract_inverted_index.subtle | 85 |
| abstract_inverted_index.advance | 192 |
| abstract_inverted_index.between | 88 |
| abstract_inverted_index.ceiling | 104 |
| abstract_inverted_index.complex | 11, 183 |
| abstract_inverted_index.derived | 138 |
| abstract_inverted_index.designs | 185 |
| abstract_inverted_index.dynamic | 62 |
| abstract_inverted_index.evolved | 97 |
| abstract_inverted_index.machine | 41 |
| abstract_inverted_index.pursuit | 194 |
| abstract_inverted_index.several | 125 |
| abstract_inverted_index.usages, | 160 |
| abstract_inverted_index.(MoSeq), | 39 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Recovery | 152 |
| abstract_inverted_index.adaptive | 12, 82 |
| abstract_inverted_index.approach | 190 |
| abstract_inverted_index.assessed | 19 |
| abstract_inverted_index.behavior | 50 |
| abstract_inverted_index.clusters | 155 |
| abstract_inverted_index.disrupts | 5 |
| abstract_inverted_index.employed | 36 |
| abstract_inverted_index.hallmark | 167 |
| abstract_inverted_index.involved | 74 |
| abstract_inverted_index.observed | 65, 70 |
| abstract_inverted_index.recovery | 9, 23, 28, 145, 174, 201 |
| abstract_inverted_index.repeated | 53 |
| abstract_inverted_index.research | 179 |
| abstract_inverted_index.segments | 46 |
| abstract_inverted_index.sequence | 107 |
| abstract_inverted_index.standard | 199 |
| abstract_inverted_index.syllable | 148 |
| abstract_inverted_index.temporal | 92 |
| abstract_inverted_index.Score,” | 134 |
| abstract_inverted_index.assessing | 173 |
| abstract_inverted_index.behaviors | 14 |
| abstract_inverted_index.capturing | 57 |
| abstract_inverted_index.criteria. | 29 |
| abstract_inverted_index.discrete, | 52 |
| abstract_inverted_index.emergence | 80 |
| abstract_inverted_index.findings. | 128 |
| abstract_inverted_index.framework | 43 |
| abstract_inverted_index.function, | 7 |
| abstract_inverted_index.informing | 176 |
| abstract_inverted_index.involving | 10 |
| abstract_inverted_index.patterns. | 150 |
| abstract_inverted_index.potential | 164 |
| abstract_inverted_index.preinjury | 78 |
| abstract_inverted_index.recovery. | 68 |
| abstract_inverted_index.sequences | 64, 96 |
| abstract_inverted_index.syllables | 110, 157, 168 |
| abstract_inverted_index.aggregated | 140 |
| abstract_inverted_index.behavioral | 54, 59, 63, 95, 170 |
| abstract_inverted_index.behaviors, | 79, 83 |
| abstract_inverted_index.biomarkers | 171 |
| abstract_inverted_index.correlated | 112 |
| abstract_inverted_index.functional | 72 |
| abstract_inverted_index.highlights | 162 |
| abstract_inverted_index.identified | 154 |
| abstract_inverted_index.individual | 86 |
| abstract_inverted_index.introduced | 131 |
| abstract_inverted_index.predefined | 27 |
| abstract_inverted_index.quantifies | 144 |
| abstract_inverted_index.sequencing | 38 |
| abstract_inverted_index.suggesting | 102 |
| abstract_inverted_index.therapies. | 177 |
| abstract_inverted_index.throughout | 66 |
| abstract_inverted_index.aggregation | 189 |
| abstract_inverted_index.assessment. | 202 |
| abstract_inverted_index.assessments | 24 |
| abstract_inverted_index.correlation | 123 |
| abstract_inverted_index.differences | 87 |
| abstract_inverted_index.effectively | 56 |
| abstract_inverted_index.incorporate | 181 |
| abstract_inverted_index.reemergence | 76 |
| abstract_inverted_index.repertoires | 60 |
| abstract_inverted_index.severities, | 101 |
| abstract_inverted_index.traditional | 21 |
| abstract_inverted_index.“Recovery | 133 |
| abstract_inverted_index.consistently | 98 |
| abstract_inverted_index.constraints, | 34 |
| abstract_inverted_index.experimental | 184 |
| abstract_inverted_index.histological | 127 |
| abstract_inverted_index.improvements | 73 |
| abstract_inverted_index.organization | 93 |
| abstract_inverted_index.outperformed | 120 |
| abstract_inverted_index.automatically | 45 |
| abstract_inverted_index.Interestingly, | 90 |
| abstract_inverted_index.injury-related | 126 |
| abstract_inverted_index.learning-driven | 42 |
| abstract_inverted_index.reorganization. | 108 |
| abstract_inverted_index.“syllables”, | 55 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 25 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.76688175 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |