Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.16387
To generate data from trained diffusion models, most inference algorithms, such as DDPM, DDIM, and other variants, rely on discretizing the reverse SDEs or their equivalent ODEs. In this paper, we view such approaches as decomposing the entire denoising diffusion process into several segments, each corresponding to a reverse transition kernel (RTK) sampling subproblem. Specifically, DDPM uses a Gaussian approximation for the RTK, resulting in low per-subproblem complexity but requiring a large number of segments (i.e., subproblems), which is conjectured to be inefficient. To address this, we develop a general RTK framework that enables a more balanced subproblem decomposition, resulting in $\tilde O(1)$ subproblems, each with strongly log-concave targets. We then propose leveraging two fast sampling algorithms, the Metropolis-Adjusted Langevin Algorithm (MALA) and Underdamped Langevin Dynamics (ULD), for solving these strongly log-concave subproblems. This gives rise to the RTK-MALA and RTK-ULD algorithms for diffusion inference. In theory, we further develop the convergence guarantees for RTK-MALA and RTK-ULD in total variation (TV) distance: RTK-ULD can achieve $ε$ target error within $\tilde{\mathcal O}(d^{1/2}ε^{-1})$ under mild conditions, and RTK-MALA enjoys a $\mathcal{O}(d^{2}\log(d/ε))$ convergence rate under slightly stricter conditions. These theoretical results surpass the state-of-the-art convergence rates for diffusion inference and are well supported by numerical experiments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.16387
- https://arxiv.org/pdf/2405.16387
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399115588
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399115588Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.16387Digital Object Identifier
- Title
-
Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion InferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-26Full publication date if available
- Authors
-
Xunpeng Huang, Difan Zou, Hanze Dong, Yi Zhang, Yi-An Ma, Tong ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.16387Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.16387Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.16387Direct OA link when available
- Concepts
-
Inference, Kernel (algebra), Diffusion, Computer science, Transition (genetics), Kernel smoother, Statistical physics, Kernel method, Mathematics, Artificial intelligence, Chemistry, Physics, Thermodynamics, Discrete mathematics, Radial basis function kernel, Biochemistry, Support vector machine, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399115588 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.16387 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.16387 |
| ids.openalex | https://openalex.org/W4399115588 |
| fwci | |
| type | preprint |
| title | Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.40709999203681946 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.3522999882698059 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6703042387962341 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C74193536 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6473774909973145 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[1].display_name | Kernel (algebra) |
| concepts[2].id | https://openalex.org/C69357855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5818544626235962 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[2].display_name | Diffusion |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5592009425163269 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C194232998 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5519503951072693 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1606712 |
| concepts[4].display_name | Transition (genetics) |
| concepts[5].id | https://openalex.org/C27406209 |
| concepts[5].level | 5 |
| concepts[5].score | 0.41446274518966675 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6394203 |
| concepts[5].display_name | Kernel smoother |
| concepts[6].id | https://openalex.org/C121864883 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3498539328575134 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[6].display_name | Statistical physics |
| concepts[7].id | https://openalex.org/C122280245 |
| concepts[7].level | 3 |
| concepts[7].score | 0.29868972301483154 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[7].display_name | Kernel method |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2507079541683197 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24508023262023926 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13402631878852844 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10803753137588501 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C97355855 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08074399828910828 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[12].display_name | Thermodynamics |
| concepts[13].id | https://openalex.org/C118615104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07523879408836365 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[13].display_name | Discrete mathematics |
| concepts[14].id | https://openalex.org/C75866337 |
| concepts[14].level | 4 |
| concepts[14].score | 0.06627446413040161 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7280263 |
| concepts[14].display_name | Radial basis function kernel |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C12267149 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[16].display_name | Support vector machine |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.6703042387962341 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/kernel |
| keywords[1].score | 0.6473774909973145 |
| keywords[1].display_name | Kernel (algebra) |
| keywords[2].id | https://openalex.org/keywords/diffusion |
| keywords[2].score | 0.5818544626235962 |
| keywords[2].display_name | Diffusion |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5592009425163269 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/transition |
| keywords[4].score | 0.5519503951072693 |
| keywords[4].display_name | Transition (genetics) |
| keywords[5].id | https://openalex.org/keywords/kernel-smoother |
| keywords[5].score | 0.41446274518966675 |
| keywords[5].display_name | Kernel smoother |
| keywords[6].id | https://openalex.org/keywords/statistical-physics |
| keywords[6].score | 0.3498539328575134 |
| keywords[6].display_name | Statistical physics |
| keywords[7].id | https://openalex.org/keywords/kernel-method |
| keywords[7].score | 0.29868972301483154 |
| keywords[7].display_name | Kernel method |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2507079541683197 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.24508023262023926 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.13402631878852844 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.10803753137588501 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/thermodynamics |
| keywords[12].score | 0.08074399828910828 |
| keywords[12].display_name | Thermodynamics |
| keywords[13].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[13].score | 0.07523879408836365 |
| keywords[13].display_name | Discrete mathematics |
| keywords[14].id | https://openalex.org/keywords/radial-basis-function-kernel |
| keywords[14].score | 0.06627446413040161 |
| keywords[14].display_name | Radial basis function kernel |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.16387 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.16387 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.16387 |
| locations[1].id | doi:10.48550/arxiv.2405.16387 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.16387 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083207127 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xunpeng Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Xunpeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085848346 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6544-2593 |
| authorships[1].author.display_name | Difan Zou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zou, Difan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061778641 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8846-1260 |
| authorships[2].author.display_name | Hanze Dong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dong, Hanze |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108708463 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6881-384X |
| authorships[3].author.display_name | Yi Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Yi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5041806431 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6074-6638 |
| authorships[4].author.display_name | Yi-An Ma |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ma, Yi-An |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100378776 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2046-4502 |
| authorships[5].author.display_name | Tong Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Tong |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.16387 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.40709999203681946 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4287906215, https://openalex.org/W2999721917, https://openalex.org/W2079476921, https://openalex.org/W2420851703, https://openalex.org/W3088749410, https://openalex.org/W2011212036, https://openalex.org/W2765690689, https://openalex.org/W2372479247, https://openalex.org/W2103007496, https://openalex.org/W2064971292 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.16387 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.16387 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.16387 |
| primary_location.id | pmh:oai:arXiv.org:2405.16387 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.16387 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.16387 |
| publication_date | 2024-05-26 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 57, 70, 88, 94, 177 |
| abstract_inverted_index.In | 27, 145 |
| abstract_inverted_index.To | 0, 83 |
| abstract_inverted_index.We | 109 |
| abstract_inverted_index.as | 11, 34 |
| abstract_inverted_index.be | 81 |
| abstract_inverted_index.by | 200 |
| abstract_inverted_index.in | 64, 100, 157 |
| abstract_inverted_index.is | 78 |
| abstract_inverted_index.of | 73 |
| abstract_inverted_index.on | 18 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 46, 80, 136 |
| abstract_inverted_index.we | 30, 86, 147 |
| abstract_inverted_index.RTK | 90 |
| abstract_inverted_index.and | 14, 122, 139, 155, 174, 196 |
| abstract_inverted_index.are | 197 |
| abstract_inverted_index.but | 68 |
| abstract_inverted_index.can | 163 |
| abstract_inverted_index.for | 60, 127, 142, 153, 193 |
| abstract_inverted_index.low | 65 |
| abstract_inverted_index.the | 20, 36, 61, 117, 137, 150, 189 |
| abstract_inverted_index.two | 113 |
| abstract_inverted_index.$ε$ | 165 |
| abstract_inverted_index.(TV) | 160 |
| abstract_inverted_index.DDPM | 55 |
| abstract_inverted_index.RTK, | 62 |
| abstract_inverted_index.SDEs | 22 |
| abstract_inverted_index.This | 133 |
| abstract_inverted_index.data | 2 |
| abstract_inverted_index.each | 44, 104 |
| abstract_inverted_index.fast | 114 |
| abstract_inverted_index.from | 3 |
| abstract_inverted_index.into | 41 |
| abstract_inverted_index.mild | 172 |
| abstract_inverted_index.more | 95 |
| abstract_inverted_index.most | 7 |
| abstract_inverted_index.rate | 180 |
| abstract_inverted_index.rely | 17 |
| abstract_inverted_index.rise | 135 |
| abstract_inverted_index.such | 10, 32 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.then | 110 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.uses | 56 |
| abstract_inverted_index.view | 31 |
| abstract_inverted_index.well | 198 |
| abstract_inverted_index.with | 105 |
| abstract_inverted_index.(RTK) | 51 |
| abstract_inverted_index.DDIM, | 13 |
| abstract_inverted_index.DDPM, | 12 |
| abstract_inverted_index.O(1)$ | 102 |
| abstract_inverted_index.ODEs. | 26 |
| abstract_inverted_index.These | 185 |
| abstract_inverted_index.error | 167 |
| abstract_inverted_index.gives | 134 |
| abstract_inverted_index.large | 71 |
| abstract_inverted_index.other | 15 |
| abstract_inverted_index.rates | 192 |
| abstract_inverted_index.their | 24 |
| abstract_inverted_index.these | 129 |
| abstract_inverted_index.this, | 85 |
| abstract_inverted_index.total | 158 |
| abstract_inverted_index.under | 171, 181 |
| abstract_inverted_index.which | 77 |
| abstract_inverted_index.(MALA) | 121 |
| abstract_inverted_index.(ULD), | 126 |
| abstract_inverted_index.(i.e., | 75 |
| abstract_inverted_index.enjoys | 176 |
| abstract_inverted_index.entire | 37 |
| abstract_inverted_index.kernel | 50 |
| abstract_inverted_index.number | 72 |
| abstract_inverted_index.paper, | 29 |
| abstract_inverted_index.target | 166 |
| abstract_inverted_index.within | 168 |
| abstract_inverted_index.$\tilde | 101 |
| abstract_inverted_index.RTK-ULD | 140, 156, 162 |
| abstract_inverted_index.achieve | 164 |
| abstract_inverted_index.address | 84 |
| abstract_inverted_index.develop | 87, 149 |
| abstract_inverted_index.enables | 93 |
| abstract_inverted_index.further | 148 |
| abstract_inverted_index.general | 89 |
| abstract_inverted_index.models, | 6 |
| abstract_inverted_index.process | 40 |
| abstract_inverted_index.propose | 111 |
| abstract_inverted_index.results | 187 |
| abstract_inverted_index.reverse | 21, 48 |
| abstract_inverted_index.several | 42 |
| abstract_inverted_index.solving | 128 |
| abstract_inverted_index.surpass | 188 |
| abstract_inverted_index.theory, | 146 |
| abstract_inverted_index.trained | 4 |
| abstract_inverted_index.Dynamics | 125 |
| abstract_inverted_index.Gaussian | 58 |
| abstract_inverted_index.Langevin | 119, 124 |
| abstract_inverted_index.RTK-MALA | 138, 154, 175 |
| abstract_inverted_index.balanced | 96 |
| abstract_inverted_index.generate | 1 |
| abstract_inverted_index.sampling | 52, 115 |
| abstract_inverted_index.segments | 74 |
| abstract_inverted_index.slightly | 182 |
| abstract_inverted_index.stricter | 183 |
| abstract_inverted_index.strongly | 106, 130 |
| abstract_inverted_index.targets. | 108 |
| abstract_inverted_index.Algorithm | 120 |
| abstract_inverted_index.denoising | 38 |
| abstract_inverted_index.diffusion | 5, 39, 143, 194 |
| abstract_inverted_index.distance: | 161 |
| abstract_inverted_index.framework | 91 |
| abstract_inverted_index.inference | 8, 195 |
| abstract_inverted_index.numerical | 201 |
| abstract_inverted_index.requiring | 69 |
| abstract_inverted_index.resulting | 63, 99 |
| abstract_inverted_index.segments, | 43 |
| abstract_inverted_index.supported | 199 |
| abstract_inverted_index.variants, | 16 |
| abstract_inverted_index.variation | 159 |
| abstract_inverted_index.algorithms | 141 |
| abstract_inverted_index.approaches | 33 |
| abstract_inverted_index.complexity | 67 |
| abstract_inverted_index.equivalent | 25 |
| abstract_inverted_index.guarantees | 152 |
| abstract_inverted_index.inference. | 144 |
| abstract_inverted_index.leveraging | 112 |
| abstract_inverted_index.subproblem | 97 |
| abstract_inverted_index.transition | 49 |
| abstract_inverted_index.Underdamped | 123 |
| abstract_inverted_index.algorithms, | 9, 116 |
| abstract_inverted_index.conditions, | 173 |
| abstract_inverted_index.conditions. | 184 |
| abstract_inverted_index.conjectured | 79 |
| abstract_inverted_index.convergence | 151, 179, 191 |
| abstract_inverted_index.decomposing | 35 |
| abstract_inverted_index.log-concave | 107, 131 |
| abstract_inverted_index.subproblem. | 53 |
| abstract_inverted_index.theoretical | 186 |
| abstract_inverted_index.discretizing | 19 |
| abstract_inverted_index.experiments. | 202 |
| abstract_inverted_index.inefficient. | 82 |
| abstract_inverted_index.subproblems, | 103 |
| abstract_inverted_index.subproblems. | 132 |
| abstract_inverted_index.Specifically, | 54 |
| abstract_inverted_index.approximation | 59 |
| abstract_inverted_index.corresponding | 45 |
| abstract_inverted_index.subproblems), | 76 |
| abstract_inverted_index.decomposition, | 98 |
| abstract_inverted_index.per-subproblem | 66 |
| abstract_inverted_index.$\tilde{\mathcal | 169 |
| abstract_inverted_index.state-of-the-art | 190 |
| abstract_inverted_index.Metropolis-Adjusted | 118 |
| abstract_inverted_index.O}(d^{1/2}ε^{-1})$ | 170 |
| abstract_inverted_index.$\mathcal{O}(d^{2}\log(d/ε))$ | 178 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |