Review of Deep Learning Applied to Occluded Object Detection Article Swipe
Occluded object detection has long been a difficulty and hot topic in the field of computer vision. Based on convolutional neural network, the deep learning takes the object detection task as a classification and regression task to handle, and obtains remarkable achievements. The mask confuses the features of object when the object is occluded, making the deep convolutional neural network cannot handle it well and reducing the performance of detector in ideal scenes. Considering the universality of occlusion in reality, the effective detection of occluded object has important research value. In order to further promote the development of occluded object detection, this paper makes a comprehensive summary of occluded object detection algorithms, and makes a reasonable classification and analysis. First of all, based on a simple overview of object detection, this paper introduces the relevant theoretic background, research difficulties and datasets about occluded object detection. After, this paper focuses on the algo-rithms to improve the performance of occluded object detection from the aspects of object structure, loss function, non-maximum suppression and semantic partial. This paper compares the performance of different detection algo-rithms after summarizing the relationship and development of various algorithms. Finally, this paper points out the difficulties of occluded object detection and looks forward to its future development directions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doaj.org/article/3ab079cc05e84528b6bc4c54642cb83c
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388842611
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388842611Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3778/j.issn.1673-9418.2112035Digital Object Identifier
- Title
-
Review of Deep Learning Applied to Occluded Object DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-01Full publication date if available
- Authors
-
Fangwei LiList of authors in order
- Landing page
-
https://doaj.org/article/3ab079cc05e84528b6bc4c54642cb83cPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doaj.org/article/3ab079cc05e84528b6bc4c54642cb83cDirect OA link when available
- Concepts
-
Artificial intelligence, Computer science, Deep learning, Object (grammar), Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388842611 |
|---|---|
| doi | https://doi.org/10.3778/j.issn.1673-9418.2112035 |
| ids.openalex | https://openalex.org/W4388842611 |
| fwci | 1.26851 |
| type | article |
| title | Review of Deep Learning Applied to Occluded Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.39989998936653137 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.3961000144481659 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.3862000107765198 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6031308770179749 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5636793971061707 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5038043856620789 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C2781238097 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49441003799438477 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[3].display_name | Object (grammar) |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38667547702789307 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6031308770179749 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5636793971061707 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.5038043856620789 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.49441003799438477 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.38667547702789307 |
| keywords[4].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:doaj.org/article:3ab079cc05e84528b6bc4c54642cb83c |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401280 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Jisuanji kexue yu tansuo, Vol 16, Iss 6, Pp 1243-1259 (2022) |
| locations[0].landing_page_url | https://doaj.org/article/3ab079cc05e84528b6bc4c54642cb83c |
| indexed_in | doaj |
| authorships[0].author.id | https://openalex.org/A5102002293 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fangwei Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[0].affiliations[0].raw_affiliation_string | 1. Academy of Systems Engineering, Academy of Military Sciences, Beijing 100141, China;2. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China |
| authorships[0].institutions[0].id | https://openalex.org/I20231570 |
| authorships[0].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Peking University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | 1. Academy of Systems Engineering, Academy of Military Sciences, Beijing 100141, China;2. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doaj.org/article/3ab079cc05e84528b6bc4c54642cb83c |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Review of Deep Learning Applied to Occluded Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.39989998936653137 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W2755342338, https://openalex.org/W2058170566, https://openalex.org/W2036807459, https://openalex.org/W2775347418, https://openalex.org/W1969923398, https://openalex.org/W2772917594, https://openalex.org/W2166024367, https://openalex.org/W3009238340 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:doaj.org/article:3ab079cc05e84528b6bc4c54642cb83c |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401280 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Jisuanji kexue yu tansuo, Vol 16, Iss 6, Pp 1243-1259 (2022) |
| best_oa_location.landing_page_url | https://doaj.org/article/3ab079cc05e84528b6bc4c54642cb83c |
| primary_location.id | pmh:oai:doaj.org/article:3ab079cc05e84528b6bc4c54642cb83c |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401280 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Jisuanji kexue yu tansuo, Vol 16, Iss 6, Pp 1243-1259 (2022) |
| primary_location.landing_page_url | https://doaj.org/article/3ab079cc05e84528b6bc4c54642cb83c |
| publication_date | 2022-06-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 31, 104, 114, 124 |
| abstract_inverted_index.In | 90 |
| abstract_inverted_index.as | 30 |
| abstract_inverted_index.in | 11, 70, 78 |
| abstract_inverted_index.is | 52 |
| abstract_inverted_index.it | 62 |
| abstract_inverted_index.of | 14, 47, 68, 76, 83, 97, 107, 120, 127, 156, 163, 178, 188, 198 |
| abstract_inverted_index.on | 18, 123, 149 |
| abstract_inverted_index.to | 36, 92, 152, 205 |
| abstract_inverted_index.The | 42 |
| abstract_inverted_index.and | 8, 33, 38, 64, 112, 117, 139, 170, 186, 202 |
| abstract_inverted_index.has | 3, 86 |
| abstract_inverted_index.hot | 9 |
| abstract_inverted_index.its | 206 |
| abstract_inverted_index.out | 195 |
| abstract_inverted_index.the | 12, 22, 26, 45, 50, 55, 66, 74, 80, 95, 133, 150, 154, 161, 176, 184, 196 |
| abstract_inverted_index.This | 173 |
| abstract_inverted_index.all, | 121 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.deep | 23, 56 |
| abstract_inverted_index.from | 160 |
| abstract_inverted_index.long | 4 |
| abstract_inverted_index.loss | 166 |
| abstract_inverted_index.mask | 43 |
| abstract_inverted_index.task | 29, 35 |
| abstract_inverted_index.this | 101, 130, 146, 192 |
| abstract_inverted_index.well | 63 |
| abstract_inverted_index.when | 49 |
| abstract_inverted_index.Based | 17 |
| abstract_inverted_index.First | 119 |
| abstract_inverted_index.about | 141 |
| abstract_inverted_index.after | 182 |
| abstract_inverted_index.based | 122 |
| abstract_inverted_index.field | 13 |
| abstract_inverted_index.ideal | 71 |
| abstract_inverted_index.looks | 203 |
| abstract_inverted_index.makes | 103, 113 |
| abstract_inverted_index.order | 91 |
| abstract_inverted_index.paper | 102, 131, 147, 174, 193 |
| abstract_inverted_index.takes | 25 |
| abstract_inverted_index.topic | 10 |
| abstract_inverted_index.After, | 145 |
| abstract_inverted_index.cannot | 60 |
| abstract_inverted_index.future | 207 |
| abstract_inverted_index.handle | 61 |
| abstract_inverted_index.making | 54 |
| abstract_inverted_index.neural | 20, 58 |
| abstract_inverted_index.object | 1, 27, 48, 51, 85, 99, 109, 128, 143, 158, 164, 200 |
| abstract_inverted_index.points | 194 |
| abstract_inverted_index.simple | 125 |
| abstract_inverted_index.value. | 89 |
| abstract_inverted_index.aspects | 162 |
| abstract_inverted_index.focuses | 148 |
| abstract_inverted_index.forward | 204 |
| abstract_inverted_index.further | 93 |
| abstract_inverted_index.handle, | 37 |
| abstract_inverted_index.improve | 153 |
| abstract_inverted_index.network | 59 |
| abstract_inverted_index.obtains | 39 |
| abstract_inverted_index.promote | 94 |
| abstract_inverted_index.scenes. | 72 |
| abstract_inverted_index.summary | 106 |
| abstract_inverted_index.various | 189 |
| abstract_inverted_index.vision. | 16 |
| abstract_inverted_index.Finally, | 191 |
| abstract_inverted_index.Occluded | 0 |
| abstract_inverted_index.compares | 175 |
| abstract_inverted_index.computer | 15 |
| abstract_inverted_index.confuses | 44 |
| abstract_inverted_index.datasets | 140 |
| abstract_inverted_index.detector | 69 |
| abstract_inverted_index.features | 46 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.network, | 21 |
| abstract_inverted_index.occluded | 84, 98, 108, 142, 157, 199 |
| abstract_inverted_index.overview | 126 |
| abstract_inverted_index.partial. | 172 |
| abstract_inverted_index.reality, | 79 |
| abstract_inverted_index.reducing | 65 |
| abstract_inverted_index.relevant | 134 |
| abstract_inverted_index.research | 88, 137 |
| abstract_inverted_index.semantic | 171 |
| abstract_inverted_index.analysis. | 118 |
| abstract_inverted_index.detection | 2, 28, 82, 110, 159, 180, 201 |
| abstract_inverted_index.different | 179 |
| abstract_inverted_index.effective | 81 |
| abstract_inverted_index.function, | 167 |
| abstract_inverted_index.important | 87 |
| abstract_inverted_index.occluded, | 53 |
| abstract_inverted_index.occlusion | 77 |
| abstract_inverted_index.theoretic | 135 |
| abstract_inverted_index.detection, | 100, 129 |
| abstract_inverted_index.detection. | 144 |
| abstract_inverted_index.difficulty | 7 |
| abstract_inverted_index.introduces | 132 |
| abstract_inverted_index.reasonable | 115 |
| abstract_inverted_index.regression | 34 |
| abstract_inverted_index.remarkable | 40 |
| abstract_inverted_index.structure, | 165 |
| abstract_inverted_index.Considering | 73 |
| abstract_inverted_index.algo-rithms | 151, 181 |
| abstract_inverted_index.algorithms, | 111 |
| abstract_inverted_index.algorithms. | 190 |
| abstract_inverted_index.background, | 136 |
| abstract_inverted_index.development | 96, 187, 208 |
| abstract_inverted_index.directions. | 209 |
| abstract_inverted_index.non-maximum | 168 |
| abstract_inverted_index.performance | 67, 155, 177 |
| abstract_inverted_index.summarizing | 183 |
| abstract_inverted_index.suppression | 169 |
| abstract_inverted_index.difficulties | 138, 197 |
| abstract_inverted_index.relationship | 185 |
| abstract_inverted_index.universality | 75 |
| abstract_inverted_index.achievements. | 41 |
| abstract_inverted_index.comprehensive | 105 |
| abstract_inverted_index.convolutional | 19, 57 |
| abstract_inverted_index.classification | 32, 116 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5102002293 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I20231570 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.81870479 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |