Review: When worlds collide – poultry modeling in the ‘Big Data’ era Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.animal.2023.100874
Within poultry production systems, models have provided vital decision support, opportunity analysis, and performance optimization capabilities to nutritionists and producers for decades. In recent years, due to the advancement of digital and sensor technologies, 'Big Data' streams have emerged, optimally positioned to be analyzed by machine-learning (ML) modeling approaches, with strengths in forecasting and prediction. This review explores the evolution of empirical and mechanistic models in poultry production systems, and how these models may interact with new digital tools and technologies. This review will also examine the emergence of ML and Big Data in the poultry production sector, and the emergence of precision feeding and automation of poultry production systems. There are several promising directions for the field, including: (1) application of Big Data analytics (e.g., sensor-based technologies, precision feeding systems) and ML methodologies (e.g., unsupervised and supervised learning algorithms) to feed more precisely to production targets given a 'known' individual animal, and (2) combination and hybridization of data-driven and mechanistic modeling approaches to bridge decision support with improved forecasting capabilities.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.animal.2023.100874
- OA Status
- gold
- Cited By
- 14
- References
- 105
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380202186
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380202186Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.animal.2023.100874Digital Object Identifier
- Title
-
Review: When worlds collide – poultry modeling in the ‘Big Data’ eraWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-10Full publication date if available
- Authors
-
Emily M. Leishman, Jihao You, Nayara Tavares Ferreira, Sarah M. Adams, Dan Tulpan, M.J. Zuidhof, R.M. Gous, Michael A. Jacobs, J.L. EllisList of authors in order
- Landing page
-
https://doi.org/10.1016/j.animal.2023.100874Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.animal.2023.100874Direct OA link when available
- Concepts
-
Big data, Data science, Computer science, Production (economics), Field (mathematics), Automation, Analytics, Artificial intelligence, Machine learning, Data mining, Engineering, Mathematics, Mechanical engineering, Economics, Macroeconomics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 1, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
105Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380202186 |
|---|---|
| doi | https://doi.org/10.1016/j.animal.2023.100874 |
| ids.doi | https://doi.org/10.1016/j.animal.2023.100874 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37394324 |
| ids.openalex | https://openalex.org/W4380202186 |
| fwci | 6.37478494 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000818 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Animals |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077558 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Big Data |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D011200 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Poultry |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069550 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Machine Learning |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D013672 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Technology |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000818 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Animals |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000077558 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Big Data |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D011200 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Poultry |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000465 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Algorithms |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D013672 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Technology |
| type | review |
| title | Review: When worlds collide – poultry modeling in the ‘Big Data’ era |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 100874 |
| biblio.first_page | 100874 |
| topics[0].id | https://openalex.org/T10838 |
| topics[0].field.id | https://openalex.org/fields/34 |
| topics[0].field.display_name | Veterinary |
| topics[0].score | 0.992900013923645 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3404 |
| topics[0].subfield.display_name | Small Animals |
| topics[0].display_name | Animal Behavior and Welfare Studies |
| topics[1].id | https://openalex.org/T12486 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9866999983787537 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1106 |
| topics[1].subfield.display_name | Food Science |
| topics[1].display_name | Food Supply Chain Traceability |
| topics[2].id | https://openalex.org/T10333 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9621999859809875 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1103 |
| topics[2].subfield.display_name | Animal Science and Zoology |
| topics[2].display_name | Meat and Animal Product Quality |
| funders[0].id | https://openalex.org/F4320334593 |
| funders[0].ror | https://ror.org/01h531d29 |
| funders[0].display_name | Natural Sciences and Engineering Research Council of Canada |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | USD |
| apc_list.value_usd | 1400 |
| apc_paid.value | 1400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1400 |
| concepts[0].id | https://openalex.org/C75684735 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8100494742393494 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[0].display_name | Big data |
| concepts[1].id | https://openalex.org/C2522767166 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7012697458267212 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[1].display_name | Data science |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6558943390846252 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778348673 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6330857872962952 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q739302 |
| concepts[3].display_name | Production (economics) |
| concepts[4].id | https://openalex.org/C9652623 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6069512963294983 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[4].display_name | Field (mathematics) |
| concepts[5].id | https://openalex.org/C115901376 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5804349780082703 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[5].display_name | Automation |
| concepts[6].id | https://openalex.org/C79158427 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5730676651000977 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[6].display_name | Analytics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37695974111557007 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33171841502189636 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.25150710344314575 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17831319570541382 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C139719470 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[14].display_name | Macroeconomics |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/big-data |
| keywords[0].score | 0.8100494742393494 |
| keywords[0].display_name | Big data |
| keywords[1].id | https://openalex.org/keywords/data-science |
| keywords[1].score | 0.7012697458267212 |
| keywords[1].display_name | Data science |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6558943390846252 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/production |
| keywords[3].score | 0.6330857872962952 |
| keywords[3].display_name | Production (economics) |
| keywords[4].id | https://openalex.org/keywords/field |
| keywords[4].score | 0.6069512963294983 |
| keywords[4].display_name | Field (mathematics) |
| keywords[5].id | https://openalex.org/keywords/automation |
| keywords[5].score | 0.5804349780082703 |
| keywords[5].display_name | Automation |
| keywords[6].id | https://openalex.org/keywords/analytics |
| keywords[6].score | 0.5730676651000977 |
| keywords[6].display_name | Analytics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.37695974111557007 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.33171841502189636 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.25150710344314575 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.17831319570541382 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.animal.2023.100874 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S66388299 |
| locations[0].source.issn | 1751-7311, 1751-732X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1751-7311 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | animal |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | animal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.animal.2023.100874 |
| locations[1].id | pmid:37394324 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Animal : an international journal of animal bioscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37394324 |
| locations[2].id | pmh:oai:doaj.org/article:f71f0e0bc77046e78eae2a2ec1e3a450 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Animal, Vol 17, Iss , Pp 100874- (2022) |
| locations[2].landing_page_url | https://doaj.org/article/f71f0e0bc77046e78eae2a2ec1e3a450 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5022761939 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1739-3915 |
| authorships[0].author.display_name | Emily M. Leishman |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I79817857 |
| authorships[0].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Guelph |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | E.M. Leishman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[1].author.id | https://openalex.org/A5072151614 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0779-7166 |
| authorships[1].author.display_name | Jihao You |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I79817857 |
| authorships[1].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Guelph |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | J. You |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[2].author.id | https://openalex.org/A5071227381 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5503-617X |
| authorships[2].author.display_name | Nayara Tavares Ferreira |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210135035 |
| authorships[2].affiliations[0].raw_affiliation_string | Trouw Nutrition Canada, Puslinch, Ontario, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I4210135035 |
| authorships[2].institutions[0].ror | https://ror.org/03gffmq02 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210135035 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Canadian Nutrition Society |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | N.T. Ferreira |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Trouw Nutrition Canada, Puslinch, Ontario, Canada |
| authorships[3].author.id | https://openalex.org/A5038907484 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sarah M. Adams |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I79817857 |
| authorships[3].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Guelph |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | S.M. Adams |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[4].author.id | https://openalex.org/A5005286348 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1100-646X |
| authorships[4].author.display_name | Dan Tulpan |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I79817857 |
| authorships[4].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of Guelph |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | D. Tulpan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[5].author.id | https://openalex.org/A5009644632 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0953-1743 |
| authorships[5].author.display_name | M.J. Zuidhof |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I154425047 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada |
| authorships[5].institutions[0].id | https://openalex.org/I154425047 |
| authorships[5].institutions[0].ror | https://ror.org/0160cpw27 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I154425047 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | University of Alberta |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | M.J. Zuidhof |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada |
| authorships[6].author.id | https://openalex.org/A5000665995 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5457-3643 |
| authorships[6].author.display_name | R.M. Gous |
| authorships[6].countries | ZA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I95023434 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa |
| authorships[6].institutions[0].id | https://openalex.org/I95023434 |
| authorships[6].institutions[0].ror | https://ror.org/04qzfn040 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I95023434 |
| authorships[6].institutions[0].country_code | ZA |
| authorships[6].institutions[0].display_name | University of KwaZulu-Natal |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | R.M. Gous |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa |
| authorships[7].author.id | https://openalex.org/A5105930460 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1125-1644 |
| authorships[7].author.display_name | Michael A. Jacobs |
| authorships[7].affiliations[0].raw_affiliation_string | FR Analytics B.V., 7642 AP Wierden, The Netherlands |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | M. Jacobs |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | FR Analytics B.V., 7642 AP Wierden, The Netherlands |
| authorships[8].author.id | https://openalex.org/A5033286154 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0180-5084 |
| authorships[8].author.display_name | J.L. Ellis |
| authorships[8].countries | CA |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I79817857 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| authorships[8].institutions[0].id | https://openalex.org/I79817857 |
| authorships[8].institutions[0].ror | https://ror.org/01r7awg59 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I79817857 |
| authorships[8].institutions[0].country_code | CA |
| authorships[8].institutions[0].display_name | University of Guelph |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | J.L. Ellis |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.animal.2023.100874 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Review: When worlds collide – poultry modeling in the ‘Big Data’ era |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10838 |
| primary_topic.field.id | https://openalex.org/fields/34 |
| primary_topic.field.display_name | Veterinary |
| primary_topic.score | 0.992900013923645 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3404 |
| primary_topic.subfield.display_name | Small Animals |
| primary_topic.display_name | Animal Behavior and Welfare Studies |
| related_works | https://openalex.org/W4390608645, https://openalex.org/W4247566972, https://openalex.org/W4394895745, https://openalex.org/W2960264696, https://openalex.org/W3090563135, https://openalex.org/W2497432351, https://openalex.org/W4206777497, https://openalex.org/W2910064364, https://openalex.org/W4255224757, https://openalex.org/W2499527417 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.animal.2023.100874 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S66388299 |
| best_oa_location.source.issn | 1751-7311, 1751-732X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1751-7311 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | animal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | animal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.animal.2023.100874 |
| primary_location.id | doi:10.1016/j.animal.2023.100874 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S66388299 |
| primary_location.source.issn | 1751-7311, 1751-732X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1751-7311 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | animal |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | animal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.animal.2023.100874 |
| publication_date | 2023-06-10 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3008074878, https://openalex.org/W6603327141, https://openalex.org/W3028999579, https://openalex.org/W3133175011, https://openalex.org/W4281696417, https://openalex.org/W3131083112, https://openalex.org/W2804500674, https://openalex.org/W6771432433, https://openalex.org/W3128670784, https://openalex.org/W2026666204, https://openalex.org/W2015036858, https://openalex.org/W3212477737, https://openalex.org/W2150245525, https://openalex.org/W2060905003, https://openalex.org/W6772507554, https://openalex.org/W4205174052, https://openalex.org/W2131609315, https://openalex.org/W6630119209, https://openalex.org/W2039949788, https://openalex.org/W3010161961, https://openalex.org/W3194479355, https://openalex.org/W4281636994, https://openalex.org/W1887130543, https://openalex.org/W2144374444, https://openalex.org/W2109366237, https://openalex.org/W6688393986, https://openalex.org/W2137519970, https://openalex.org/W3133264109, https://openalex.org/W2107811684, https://openalex.org/W2087326628, https://openalex.org/W2948324924, https://openalex.org/W3200707343, https://openalex.org/W46382306, https://openalex.org/W2116112121, https://openalex.org/W6626183032, https://openalex.org/W6784532663, https://openalex.org/W2099473616, https://openalex.org/W2800886780, https://openalex.org/W3109748112, https://openalex.org/W2958834348, https://openalex.org/W4223904750, https://openalex.org/W2998240323, https://openalex.org/W2766362701, https://openalex.org/W3161782923, https://openalex.org/W3039440349, https://openalex.org/W6809294852, https://openalex.org/W2116272448, https://openalex.org/W4251403591, https://openalex.org/W1990078924, https://openalex.org/W4296748691, https://openalex.org/W2003741881, https://openalex.org/W3088517298, https://openalex.org/W4320495408, https://openalex.org/W6800245131, https://openalex.org/W2018237532, https://openalex.org/W943541204, https://openalex.org/W2213889404, https://openalex.org/W4229066600, https://openalex.org/W1939889, https://openalex.org/W1576280475, https://openalex.org/W2128612749, https://openalex.org/W2337945771, https://openalex.org/W2594486655, https://openalex.org/W2116500934, https://openalex.org/W3006986178, https://openalex.org/W3130903951, https://openalex.org/W2088798586, https://openalex.org/W6608808214, https://openalex.org/W6783703693, https://openalex.org/W6638391951, https://openalex.org/W2793536557, https://openalex.org/W2611467412, https://openalex.org/W1994394833, https://openalex.org/W343095306, https://openalex.org/W2970908021, https://openalex.org/W6679701382, https://openalex.org/W3198350258, https://openalex.org/W2038042795, https://openalex.org/W2119077273, https://openalex.org/W2922510373, https://openalex.org/W2602650333, https://openalex.org/W2152083724, https://openalex.org/W3036956028, https://openalex.org/W3011702218, https://openalex.org/W3083213233, https://openalex.org/W4283777356, https://openalex.org/W3156085169, https://openalex.org/W4205276654, https://openalex.org/W3004511774, https://openalex.org/W2584373776, https://openalex.org/W432255873, https://openalex.org/W2138562150, https://openalex.org/W3006431815, https://openalex.org/W2993807166, https://openalex.org/W2999436028, https://openalex.org/W1906988550, https://openalex.org/W3159649695, https://openalex.org/W4213413242, https://openalex.org/W4234023178, https://openalex.org/W600863651, https://openalex.org/W3093068646, https://openalex.org/W4206902451, https://openalex.org/W4252750931, https://openalex.org/W216779755, https://openalex.org/W3088283775 |
| referenced_works_count | 105 |
| abstract_inverted_index.a | 148 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.ML | 89, 132 |
| abstract_inverted_index.be | 42 |
| abstract_inverted_index.by | 44 |
| abstract_inverted_index.in | 51, 65, 93 |
| abstract_inverted_index.of | 29, 60, 88, 101, 106, 121, 157 |
| abstract_inverted_index.to | 16, 26, 41, 140, 144, 163 |
| abstract_inverted_index.(1) | 119 |
| abstract_inverted_index.(2) | 153 |
| abstract_inverted_index.Big | 91, 122 |
| abstract_inverted_index.and | 12, 18, 31, 53, 62, 69, 79, 90, 98, 104, 131, 136, 152, 155, 159 |
| abstract_inverted_index.are | 111 |
| abstract_inverted_index.due | 25 |
| abstract_inverted_index.for | 20, 115 |
| abstract_inverted_index.how | 70 |
| abstract_inverted_index.may | 73 |
| abstract_inverted_index.new | 76 |
| abstract_inverted_index.the | 27, 58, 86, 94, 99, 116 |
| abstract_inverted_index.'Big | 34 |
| abstract_inverted_index.(ML) | 46 |
| abstract_inverted_index.Data | 92, 123 |
| abstract_inverted_index.This | 55, 81 |
| abstract_inverted_index.also | 84 |
| abstract_inverted_index.feed | 141 |
| abstract_inverted_index.have | 5, 37 |
| abstract_inverted_index.more | 142 |
| abstract_inverted_index.will | 83 |
| abstract_inverted_index.with | 49, 75, 167 |
| abstract_inverted_index.Data' | 35 |
| abstract_inverted_index.There | 110 |
| abstract_inverted_index.given | 147 |
| abstract_inverted_index.these | 71 |
| abstract_inverted_index.tools | 78 |
| abstract_inverted_index.vital | 7 |
| abstract_inverted_index.(e.g., | 125, 134 |
| abstract_inverted_index.Within | 0 |
| abstract_inverted_index.bridge | 164 |
| abstract_inverted_index.field, | 117 |
| abstract_inverted_index.models | 4, 64, 72 |
| abstract_inverted_index.recent | 23 |
| abstract_inverted_index.review | 56, 82 |
| abstract_inverted_index.sensor | 32 |
| abstract_inverted_index.years, | 24 |
| abstract_inverted_index.'known' | 149 |
| abstract_inverted_index.animal, | 151 |
| abstract_inverted_index.digital | 30, 77 |
| abstract_inverted_index.examine | 85 |
| abstract_inverted_index.feeding | 103, 129 |
| abstract_inverted_index.poultry | 1, 66, 95, 107 |
| abstract_inverted_index.sector, | 97 |
| abstract_inverted_index.several | 112 |
| abstract_inverted_index.streams | 36 |
| abstract_inverted_index.support | 166 |
| abstract_inverted_index.targets | 146 |
| abstract_inverted_index.analyzed | 43 |
| abstract_inverted_index.decades. | 21 |
| abstract_inverted_index.decision | 8, 165 |
| abstract_inverted_index.emerged, | 38 |
| abstract_inverted_index.explores | 57 |
| abstract_inverted_index.improved | 168 |
| abstract_inverted_index.interact | 74 |
| abstract_inverted_index.learning | 138 |
| abstract_inverted_index.modeling | 47, 161 |
| abstract_inverted_index.provided | 6 |
| abstract_inverted_index.support, | 9 |
| abstract_inverted_index.systems) | 130 |
| abstract_inverted_index.systems, | 3, 68 |
| abstract_inverted_index.systems. | 109 |
| abstract_inverted_index.analysis, | 11 |
| abstract_inverted_index.analytics | 124 |
| abstract_inverted_index.emergence | 87, 100 |
| abstract_inverted_index.empirical | 61 |
| abstract_inverted_index.evolution | 59 |
| abstract_inverted_index.optimally | 39 |
| abstract_inverted_index.precisely | 143 |
| abstract_inverted_index.precision | 102, 128 |
| abstract_inverted_index.producers | 19 |
| abstract_inverted_index.promising | 113 |
| abstract_inverted_index.strengths | 50 |
| abstract_inverted_index.approaches | 162 |
| abstract_inverted_index.automation | 105 |
| abstract_inverted_index.directions | 114 |
| abstract_inverted_index.including: | 118 |
| abstract_inverted_index.individual | 150 |
| abstract_inverted_index.positioned | 40 |
| abstract_inverted_index.production | 2, 67, 96, 108, 145 |
| abstract_inverted_index.supervised | 137 |
| abstract_inverted_index.advancement | 28 |
| abstract_inverted_index.algorithms) | 139 |
| abstract_inverted_index.application | 120 |
| abstract_inverted_index.approaches, | 48 |
| abstract_inverted_index.combination | 154 |
| abstract_inverted_index.data-driven | 158 |
| abstract_inverted_index.forecasting | 52, 169 |
| abstract_inverted_index.mechanistic | 63, 160 |
| abstract_inverted_index.opportunity | 10 |
| abstract_inverted_index.performance | 13 |
| abstract_inverted_index.prediction. | 54 |
| abstract_inverted_index.capabilities | 15 |
| abstract_inverted_index.optimization | 14 |
| abstract_inverted_index.sensor-based | 126 |
| abstract_inverted_index.unsupervised | 135 |
| abstract_inverted_index.capabilities. | 170 |
| abstract_inverted_index.hybridization | 156 |
| abstract_inverted_index.methodologies | 133 |
| abstract_inverted_index.nutritionists | 17 |
| abstract_inverted_index.technologies, | 33, 127 |
| abstract_inverted_index.technologies. | 80 |
| abstract_inverted_index.machine-learning | 45 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5033286154 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I79817857 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.95698606 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |