Revising deep learning methods in parking lot occupancy detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.04288
Parking guidance systems have recently become a popular trend as a part of the smart cities' paradigm of development. The crucial part of such systems is the algorithm allowing drivers to search for available parking lots across regions of interest. The classic approach to this task is based on the application of neural network classifiers to camera records. However, existing systems demonstrate a lack of generalization ability and appropriate testing regarding specific visual conditions. In this study, we extensively evaluate state-of-the-art parking lot occupancy detection algorithms, compare their prediction quality with the recently emerged vision transformers, and propose a new pipeline based on EfficientNet architecture. Performed computational experiments have demonstrated the performance increase in the case of our model, which was evaluated on 5 different datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.04288
- https://arxiv.org/pdf/2306.04288
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380135816
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380135816Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.04288Digital Object Identifier
- Title
-
Revising deep learning methods in parking lot occupancy detectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-07Full publication date if available
- Authors
-
Anastasia Martynova, M. Kuznetsov, Vadim Porvatov, Vladislav Tishin, Andrey Kuznetsov, Natalia Semenova, Ksenia G. KuznetsovaList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.04288Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.04288Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.04288Direct OA link when available
- Concepts
-
Computer science, Occupancy, Pipeline (software), Artificial intelligence, Generalization, Architecture, Machine learning, Transformer, Deep learning, Task (project management), Artificial neural network, Data mining, Engineering, Systems engineering, Mathematics, Art, Architectural engineering, Voltage, Programming language, Electrical engineering, Visual arts, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380135816 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.04288 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.04288 |
| ids.openalex | https://openalex.org/W4380135816 |
| fwci | |
| type | preprint |
| title | Revising deep learning methods in parking lot occupancy detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12546 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Smart Parking Systems Research |
| topics[1].id | https://openalex.org/T11963 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9782000184059143 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Impact of Light on Environment and Health |
| topics[2].id | https://openalex.org/T11019 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9671000242233276 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Enhancement Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7452497482299805 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C160331591 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6692607402801514 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7075743 |
| concepts[1].display_name | Occupancy |
| concepts[2].id | https://openalex.org/C43521106 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6176241040229797 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[2].display_name | Pipeline (software) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5713871121406555 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C177148314 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5358821749687195 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[4].display_name | Generalization |
| concepts[5].id | https://openalex.org/C123657996 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5249248147010803 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[5].display_name | Architecture |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5229159593582153 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C66322947 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47451916337013245 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[7].display_name | Transformer |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4732832610607147 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46244674921035767 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4382416009902954 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3610820174217224 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.16061609983444214 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C201995342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09352654218673706 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[13].display_name | Systems engineering |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C142362112 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[15].display_name | Art |
| concepts[16].id | https://openalex.org/C170154142 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[16].display_name | Architectural engineering |
| concepts[17].id | https://openalex.org/C165801399 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[17].display_name | Voltage |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C119599485 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[19].display_name | Electrical engineering |
| concepts[20].id | https://openalex.org/C153349607 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[20].display_name | Visual arts |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7452497482299805 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/occupancy |
| keywords[1].score | 0.6692607402801514 |
| keywords[1].display_name | Occupancy |
| keywords[2].id | https://openalex.org/keywords/pipeline |
| keywords[2].score | 0.6176241040229797 |
| keywords[2].display_name | Pipeline (software) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5713871121406555 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/generalization |
| keywords[4].score | 0.5358821749687195 |
| keywords[4].display_name | Generalization |
| keywords[5].id | https://openalex.org/keywords/architecture |
| keywords[5].score | 0.5249248147010803 |
| keywords[5].display_name | Architecture |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5229159593582153 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/transformer |
| keywords[7].score | 0.47451916337013245 |
| keywords[7].display_name | Transformer |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4732832610607147 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.46244674921035767 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.4382416009902954 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3610820174217224 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.16061609983444214 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/systems-engineering |
| keywords[13].score | 0.09352654218673706 |
| keywords[13].display_name | Systems engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.04288 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.04288 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.04288 |
| locations[1].id | doi:10.48550/arxiv.2306.04288 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.04288 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102698723 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Anastasia Martynova |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Martynova, Anastasia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024466801 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6281-9503 |
| authorships[1].author.display_name | M. Kuznetsov |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kuznetsov, Mikhail |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5008237271 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1950-9205 |
| authorships[2].author.display_name | Vadim Porvatov |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Porvatov, Vadim |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085550862 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Vladislav Tishin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tishin, Vladislav |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086303779 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6446-8663 |
| authorships[4].author.display_name | Andrey Kuznetsov |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kuznetsov, Andrey |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101489553 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4189-5739 |
| authorships[5].author.display_name | Natalia Semenova |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Semenova, Natalia |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5052858147 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7447-4047 |
| authorships[6].author.display_name | Ksenia G. Kuznetsova |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kuznetsova, Ksenia |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.04288 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Revising deep learning methods in parking lot occupancy detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12546 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Smart Parking Systems Research |
| related_works | https://openalex.org/W4282043467, https://openalex.org/W2105697914, https://openalex.org/W3093197249, https://openalex.org/W1968324288, https://openalex.org/W1540010871, https://openalex.org/W3023979140, https://openalex.org/W2904068067, https://openalex.org/W1565491139, https://openalex.org/W2969770948, https://openalex.org/W3177545769 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.04288 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.04288 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.04288 |
| primary_location.id | pmh:oai:arXiv.org:2306.04288 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.04288 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.04288 |
| publication_date | 2023-06-07 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 123 |
| abstract_inverted_index.a | 6, 10, 62, 98 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.in | 113 |
| abstract_inverted_index.is | 25, 46 |
| abstract_inverted_index.of | 12, 17, 22, 38, 51, 64, 116 |
| abstract_inverted_index.on | 48, 102, 122 |
| abstract_inverted_index.to | 30, 43, 55 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.The | 19, 40 |
| abstract_inverted_index.and | 67, 96 |
| abstract_inverted_index.for | 32 |
| abstract_inverted_index.lot | 82 |
| abstract_inverted_index.new | 99 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 13, 26, 49, 91, 110, 114 |
| abstract_inverted_index.was | 120 |
| abstract_inverted_index.case | 115 |
| abstract_inverted_index.have | 3, 108 |
| abstract_inverted_index.lack | 63 |
| abstract_inverted_index.lots | 35 |
| abstract_inverted_index.part | 11, 21 |
| abstract_inverted_index.such | 23 |
| abstract_inverted_index.task | 45 |
| abstract_inverted_index.this | 44, 75 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.based | 47, 101 |
| abstract_inverted_index.smart | 14 |
| abstract_inverted_index.their | 87 |
| abstract_inverted_index.trend | 8 |
| abstract_inverted_index.which | 119 |
| abstract_inverted_index.across | 36 |
| abstract_inverted_index.become | 5 |
| abstract_inverted_index.camera | 56 |
| abstract_inverted_index.model, | 118 |
| abstract_inverted_index.neural | 52 |
| abstract_inverted_index.search | 31 |
| abstract_inverted_index.study, | 76 |
| abstract_inverted_index.vision | 94 |
| abstract_inverted_index.visual | 72 |
| abstract_inverted_index.Parking | 0 |
| abstract_inverted_index.ability | 66 |
| abstract_inverted_index.cities' | 15 |
| abstract_inverted_index.classic | 41 |
| abstract_inverted_index.compare | 86 |
| abstract_inverted_index.crucial | 20 |
| abstract_inverted_index.drivers | 29 |
| abstract_inverted_index.emerged | 93 |
| abstract_inverted_index.network | 53 |
| abstract_inverted_index.parking | 34, 81 |
| abstract_inverted_index.popular | 7 |
| abstract_inverted_index.propose | 97 |
| abstract_inverted_index.quality | 89 |
| abstract_inverted_index.regions | 37 |
| abstract_inverted_index.systems | 2, 24, 60 |
| abstract_inverted_index.testing | 69 |
| abstract_inverted_index.However, | 58 |
| abstract_inverted_index.allowing | 28 |
| abstract_inverted_index.approach | 42 |
| abstract_inverted_index.evaluate | 79 |
| abstract_inverted_index.existing | 59 |
| abstract_inverted_index.guidance | 1 |
| abstract_inverted_index.increase | 112 |
| abstract_inverted_index.paradigm | 16 |
| abstract_inverted_index.pipeline | 100 |
| abstract_inverted_index.recently | 4, 92 |
| abstract_inverted_index.records. | 57 |
| abstract_inverted_index.specific | 71 |
| abstract_inverted_index.Performed | 105 |
| abstract_inverted_index.algorithm | 27 |
| abstract_inverted_index.available | 33 |
| abstract_inverted_index.datasets. | 125 |
| abstract_inverted_index.detection | 84 |
| abstract_inverted_index.different | 124 |
| abstract_inverted_index.evaluated | 121 |
| abstract_inverted_index.interest. | 39 |
| abstract_inverted_index.occupancy | 83 |
| abstract_inverted_index.regarding | 70 |
| abstract_inverted_index.prediction | 88 |
| abstract_inverted_index.algorithms, | 85 |
| abstract_inverted_index.application | 50 |
| abstract_inverted_index.appropriate | 68 |
| abstract_inverted_index.classifiers | 54 |
| abstract_inverted_index.conditions. | 73 |
| abstract_inverted_index.demonstrate | 61 |
| abstract_inverted_index.experiments | 107 |
| abstract_inverted_index.extensively | 78 |
| abstract_inverted_index.performance | 111 |
| abstract_inverted_index.EfficientNet | 103 |
| abstract_inverted_index.demonstrated | 109 |
| abstract_inverted_index.development. | 18 |
| abstract_inverted_index.architecture. | 104 |
| abstract_inverted_index.computational | 106 |
| abstract_inverted_index.transformers, | 95 |
| abstract_inverted_index.generalization | 65 |
| abstract_inverted_index.state-of-the-art | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |