Revisiting Local Descriptor for Improved Few-Shot Classification Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2103.16009
Few-shot classification studies the problem of quickly adapting a deep learner to understanding novel classes based on few support images. In this context, recent research efforts have been aimed at designing more and more complex classifiers that measure similarities between query and support images, but left the importance of feature embeddings seldom explored. We show that the reliance on sophisticated classifiers is not necessary, and a simple classifier applied directly to improved feature embeddings can instead outperform most of the leading methods in the literature. To this end, we present a new method named \textbf{DCAP} for few-shot classification, in which we investigate how one can improve the quality of embeddings by leveraging \textbf{D}ense \textbf{C}lassification and \textbf{A}ttentive \textbf{P}ooling. Specifically, we propose to train a learner on base classes with abundant samples to solve dense classification problem first and then meta-train the learner on a bunch of randomly sampled few-shot tasks to adapt it to few-shot scenario or the test time scenario. During meta-training, we suggest to pool feature maps by applying attentive pooling instead of the widely used global average pooling (GAP) to prepare embeddings for few-shot classification. Attentive pooling learns to reweight local descriptors, explaining what the learner is looking for as evidence for decision making. Experiments on two benchmark datasets show the proposed method to be superior in multiple few-shot settings while being simpler and more explainable. Code is available at: \url{https://github.com/Ukeyboard/dcap/}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2103.16009
- https://arxiv.org/pdf/2103.16009
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4291172217
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4291172217Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2103.16009Digital Object Identifier
- Title
-
Revisiting Local Descriptor for Improved Few-Shot ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-30Full publication date if available
- Authors
-
Jun He, Richang Hong, Xueliang Liu, Mingliang Xu, Qianru SunList of authors in order
- Landing page
-
https://arxiv.org/abs/2103.16009Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2103.16009Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2103.16009Direct OA link when available
- Concepts
-
Pooling, Computer science, Classifier (UML), Artificial intelligence, Shot (pellet), Benchmark (surveying), Feature (linguistics), Machine learning, Pattern recognition (psychology), Context (archaeology), Data mining, Geodesy, Philosophy, Chemistry, Geography, Linguistics, Biology, Organic chemistry, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4291172217 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2103.16009 |
| ids.doi | https://doi.org/10.48550/arxiv.2103.16009 |
| ids.openalex | https://openalex.org/W4291172217 |
| fwci | |
| type | preprint |
| title | Revisiting Local Descriptor for Improved Few-Shot Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C70437156 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8686044812202454 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[0].display_name | Pooling |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7538313865661621 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C95623464 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6739274263381958 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[2].display_name | Classifier (UML) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6479864120483398 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2778344882 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5884416103363037 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[4].display_name | Shot (pellet) |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5838949084281921 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5028731226921082 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45980018377304077 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43733882904052734 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2779343474 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4270205497741699 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[9].display_name | Context (archaeology) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3350191116333008 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C178790620 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[17].display_name | Organic chemistry |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/pooling |
| keywords[0].score | 0.8686044812202454 |
| keywords[0].display_name | Pooling |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7538313865661621 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/classifier |
| keywords[2].score | 0.6739274263381958 |
| keywords[2].display_name | Classifier (UML) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6479864120483398 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/shot |
| keywords[4].score | 0.5884416103363037 |
| keywords[4].display_name | Shot (pellet) |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5838949084281921 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5028731226921082 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.45980018377304077 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.43733882904052734 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/context |
| keywords[9].score | 0.4270205497741699 |
| keywords[9].display_name | Context (archaeology) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3350191116333008 |
| keywords[10].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2103.16009 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2103.16009 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2103.16009 |
| locations[1].id | doi:10.48550/arxiv.2103.16009 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2103.16009 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100766736 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3017-2108 |
| authorships[0].author.display_name | Jun He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | He, Jun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051332325 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5461-3986 |
| authorships[1].author.display_name | Richang Hong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hong, Richang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101993173 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0077-9715 |
| authorships[2].author.display_name | Xueliang Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Xueliang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5081346568 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6885-3451 |
| authorships[3].author.display_name | Mingliang Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Mingliang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101633158 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2689-317X |
| authorships[4].author.display_name | Qianru Sun |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sun, Qianru |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2103.16009 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Revisiting Local Descriptor for Improved Few-Shot Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2953234277, https://openalex.org/W2626256601, https://openalex.org/W147410782, https://openalex.org/W2900413183, https://openalex.org/W4390975304, https://openalex.org/W3022252430, https://openalex.org/W4287804464, https://openalex.org/W3103989898, https://openalex.org/W3211292372, https://openalex.org/W2951187577 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2103.16009 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2103.16009 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2103.16009 |
| primary_location.id | pmh:oai:arXiv.org:2103.16009 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2103.16009 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2103.16009 |
| publication_date | 2021-03-30 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 65, 90, 122, 142 |
| abstract_inverted_index.In | 20 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.We | 53 |
| abstract_inverted_index.as | 201 |
| abstract_inverted_index.at | 29 |
| abstract_inverted_index.be | 216 |
| abstract_inverted_index.by | 110, 168 |
| abstract_inverted_index.in | 82, 98, 218 |
| abstract_inverted_index.is | 61, 198, 229 |
| abstract_inverted_index.it | 151 |
| abstract_inverted_index.of | 5, 48, 78, 108, 144, 173 |
| abstract_inverted_index.on | 16, 58, 124, 141, 207 |
| abstract_inverted_index.or | 155 |
| abstract_inverted_index.to | 11, 70, 120, 130, 149, 152, 164, 181, 190, 215 |
| abstract_inverted_index.we | 88, 100, 118, 162 |
| abstract_inverted_index.and | 32, 41, 64, 114, 136, 225 |
| abstract_inverted_index.at: | 231 |
| abstract_inverted_index.but | 44 |
| abstract_inverted_index.can | 74, 104 |
| abstract_inverted_index.few | 17 |
| abstract_inverted_index.for | 95, 184, 200, 203 |
| abstract_inverted_index.how | 102 |
| abstract_inverted_index.new | 91 |
| abstract_inverted_index.not | 62 |
| abstract_inverted_index.one | 103 |
| abstract_inverted_index.the | 3, 46, 56, 79, 83, 106, 139, 156, 174, 196, 212 |
| abstract_inverted_index.two | 208 |
| abstract_inverted_index.Code | 228 |
| abstract_inverted_index.base | 125 |
| abstract_inverted_index.been | 27 |
| abstract_inverted_index.deep | 9 |
| abstract_inverted_index.end, | 87 |
| abstract_inverted_index.have | 26 |
| abstract_inverted_index.left | 45 |
| abstract_inverted_index.maps | 167 |
| abstract_inverted_index.more | 31, 33, 226 |
| abstract_inverted_index.most | 77 |
| abstract_inverted_index.pool | 165 |
| abstract_inverted_index.show | 54, 211 |
| abstract_inverted_index.test | 157 |
| abstract_inverted_index.that | 36, 55 |
| abstract_inverted_index.then | 137 |
| abstract_inverted_index.this | 21, 86 |
| abstract_inverted_index.time | 158 |
| abstract_inverted_index.used | 176 |
| abstract_inverted_index.what | 195 |
| abstract_inverted_index.with | 127 |
| abstract_inverted_index.(GAP) | 180 |
| abstract_inverted_index.adapt | 150 |
| abstract_inverted_index.aimed | 28 |
| abstract_inverted_index.based | 15 |
| abstract_inverted_index.being | 223 |
| abstract_inverted_index.bunch | 143 |
| abstract_inverted_index.dense | 132 |
| abstract_inverted_index.first | 135 |
| abstract_inverted_index.local | 192 |
| abstract_inverted_index.named | 93 |
| abstract_inverted_index.novel | 13 |
| abstract_inverted_index.query | 40 |
| abstract_inverted_index.solve | 131 |
| abstract_inverted_index.tasks | 148 |
| abstract_inverted_index.train | 121 |
| abstract_inverted_index.which | 99 |
| abstract_inverted_index.while | 222 |
| abstract_inverted_index.During | 160 |
| abstract_inverted_index.global | 177 |
| abstract_inverted_index.learns | 189 |
| abstract_inverted_index.method | 92, 214 |
| abstract_inverted_index.recent | 23 |
| abstract_inverted_index.seldom | 51 |
| abstract_inverted_index.simple | 66 |
| abstract_inverted_index.widely | 175 |
| abstract_inverted_index.applied | 68 |
| abstract_inverted_index.average | 178 |
| abstract_inverted_index.between | 39 |
| abstract_inverted_index.classes | 14, 126 |
| abstract_inverted_index.complex | 34 |
| abstract_inverted_index.efforts | 25 |
| abstract_inverted_index.feature | 49, 72, 166 |
| abstract_inverted_index.images, | 43 |
| abstract_inverted_index.images. | 19 |
| abstract_inverted_index.improve | 105 |
| abstract_inverted_index.instead | 75, 172 |
| abstract_inverted_index.leading | 80 |
| abstract_inverted_index.learner | 10, 123, 140, 197 |
| abstract_inverted_index.looking | 199 |
| abstract_inverted_index.making. | 205 |
| abstract_inverted_index.measure | 37 |
| abstract_inverted_index.methods | 81 |
| abstract_inverted_index.pooling | 171, 179, 188 |
| abstract_inverted_index.prepare | 182 |
| abstract_inverted_index.present | 89 |
| abstract_inverted_index.problem | 4, 134 |
| abstract_inverted_index.propose | 119 |
| abstract_inverted_index.quality | 107 |
| abstract_inverted_index.quickly | 6 |
| abstract_inverted_index.sampled | 146 |
| abstract_inverted_index.samples | 129 |
| abstract_inverted_index.simpler | 224 |
| abstract_inverted_index.studies | 2 |
| abstract_inverted_index.suggest | 163 |
| abstract_inverted_index.support | 18, 42 |
| abstract_inverted_index.Few-shot | 0 |
| abstract_inverted_index.abundant | 128 |
| abstract_inverted_index.adapting | 7 |
| abstract_inverted_index.applying | 169 |
| abstract_inverted_index.context, | 22 |
| abstract_inverted_index.datasets | 210 |
| abstract_inverted_index.decision | 204 |
| abstract_inverted_index.directly | 69 |
| abstract_inverted_index.evidence | 202 |
| abstract_inverted_index.few-shot | 96, 147, 153, 185, 220 |
| abstract_inverted_index.improved | 71 |
| abstract_inverted_index.multiple | 219 |
| abstract_inverted_index.proposed | 213 |
| abstract_inverted_index.randomly | 145 |
| abstract_inverted_index.reliance | 57 |
| abstract_inverted_index.research | 24 |
| abstract_inverted_index.reweight | 191 |
| abstract_inverted_index.scenario | 154 |
| abstract_inverted_index.settings | 221 |
| abstract_inverted_index.superior | 217 |
| abstract_inverted_index.Attentive | 187 |
| abstract_inverted_index.attentive | 170 |
| abstract_inverted_index.available | 230 |
| abstract_inverted_index.benchmark | 209 |
| abstract_inverted_index.designing | 30 |
| abstract_inverted_index.explored. | 52 |
| abstract_inverted_index.scenario. | 159 |
| abstract_inverted_index.classifier | 67 |
| abstract_inverted_index.embeddings | 50, 73, 109, 183 |
| abstract_inverted_index.explaining | 194 |
| abstract_inverted_index.importance | 47 |
| abstract_inverted_index.leveraging | 111 |
| abstract_inverted_index.meta-train | 138 |
| abstract_inverted_index.necessary, | 63 |
| abstract_inverted_index.outperform | 76 |
| abstract_inverted_index.Experiments | 206 |
| abstract_inverted_index.classifiers | 35, 60 |
| abstract_inverted_index.investigate | 101 |
| abstract_inverted_index.literature. | 84 |
| abstract_inverted_index.descriptors, | 193 |
| abstract_inverted_index.explainable. | 227 |
| abstract_inverted_index.similarities | 38 |
| abstract_inverted_index.Specifically, | 117 |
| abstract_inverted_index.\textbf{DCAP} | 94 |
| abstract_inverted_index.sophisticated | 59 |
| abstract_inverted_index.understanding | 12 |
| abstract_inverted_index.\textbf{D}ense | 112 |
| abstract_inverted_index.classification | 1, 133 |
| abstract_inverted_index.meta-training, | 161 |
| abstract_inverted_index.classification, | 97 |
| abstract_inverted_index.classification. | 186 |
| abstract_inverted_index.\textbf{P}ooling. | 116 |
| abstract_inverted_index.\textbf{A}ttentive | 115 |
| abstract_inverted_index.\textbf{C}lassification | 113 |
| abstract_inverted_index.\url{https://github.com/Ukeyboard/dcap/}. | 232 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |