Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.14965
Reinforcement learning (RL) has emerged as a promising approach to improve large language model (LLM) reasoning, yet most open efforts focus narrowly on math and code, limiting our understanding of its broader applicability to general reasoning. A key challenge lies in the lack of reliable, scalable RL reward signals across diverse reasoning domains. We introduce Guru, a curated RL reasoning corpus of 92K verifiable examples spanning six reasoning domains--Math, Code, Science, Logic, Simulation, and Tabular--each built through domain-specific reward design, deduplication, and filtering to ensure reliability and effectiveness for RL training. Based on Guru, we systematically revisit established findings in RL for LLM reasoning and observe significant variation across domains. For example, while prior work suggests that RL primarily elicits existing knowledge from pretrained models, our results reveal a more nuanced pattern: domains frequently seen during pretraining (Math, Code, Science) easily benefit from cross-domain RL training, while domains with limited pretraining exposure (Logic, Simulation, and Tabular) require in-domain training to achieve meaningful performance gains, suggesting that RL is likely to facilitate genuine skill acquisition. Finally, we present Guru-7B and Guru-32B, two models that achieve state-of-the-art performance among open models RL-trained with publicly available data, outperforming best baselines by 7.9% and 6.7% on our 17-task evaluation suite across six reasoning domains. We also show that our models effectively improve the Pass@k performance of their base models, particularly on complex tasks less likely to appear in pretraining data. We release data, models, training and evaluation code to facilitate general-purpose reasoning at: https://github.com/LLM360/Reasoning360
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.14965
- https://arxiv.org/pdf/2506.14965
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415333332
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415333332Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.14965Digital Object Identifier
- Title
-
Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain PerspectiveWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-17Full publication date if available
- Authors
-
Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Y. H. Xie, Feng Yao, Yuexin Bian, Yonghao Zhuang, Nolan Dey, Yuanyuan Zha, Yi Gu, Kun Zhou, Haijun Yu, Yuan Li, Richard E. Fan, Jianshu She, Cunxu Gao, Abulhair Saparov, Haonan Li, Taylor W. Killian, Mikhail Yurochkin, Zhengzhong Liu, Eric P. Xing, Zhiting HuList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.14965Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.14965Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.14965Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415333332 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.14965 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.14965 |
| ids.openalex | https://openalex.org/W4415333332 |
| fwci | |
| type | preprint |
| title | Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10456 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.886900007724762 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Multi-Agent Systems and Negotiation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.14965 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.14965 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.14965 |
| locations[1].id | doi:10.48550/arxiv.2506.14965 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.14965 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058829926 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhoujun Cheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cheng, Zhoujun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081122144 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shibo Hao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao, Shibo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020794355 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1932-8917 |
| authorships[2].author.display_name | Tianyang Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Tianyang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100403505 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8038-8150 |
| authorships[3].author.display_name | Fan Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Fan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103167622 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6031-3426 |
| authorships[4].author.display_name | Y. H. Xie |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xie, Yutao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100381169 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8837-6533 |
| authorships[5].author.display_name | Feng Yao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yao, Feng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5080322155 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7669-493X |
| authorships[6].author.display_name | Yuexin Bian |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bian, Yuexin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5076407338 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Yonghao Zhuang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhuang, Yonghao |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5012727636 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Nolan Dey |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Dey, Nilabjo |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5082480209 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4323-0730 |
| authorships[9].author.display_name | Yuanyuan Zha |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Zha, Yuheng |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5014319412 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-7962-9466 |
| authorships[10].author.display_name | Yi Gu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Gu, Yi |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5063459528 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-0650-9521 |
| authorships[11].author.display_name | Kun Zhou |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Zhou, Kun |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5022118078 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-3398-0880 |
| authorships[12].author.display_name | Haijun Yu |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Wang, Yuqi |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5100390903 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-8479-3049 |
| authorships[13].author.display_name | Yuan Li |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Li, Yuan |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5063971801 |
| authorships[14].author.orcid | https://orcid.org/0000-0001-7716-0377 |
| authorships[14].author.display_name | Richard E. Fan |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Fan, Richard |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5120032842 |
| authorships[15].author.orcid | |
| authorships[15].author.display_name | Jianshu She |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | She, Jianshu |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5045742148 |
| authorships[16].author.orcid | https://orcid.org/0000-0001-5633-477X |
| authorships[16].author.display_name | Cunxu Gao |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Gao, Chengqian |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5086408788 |
| authorships[17].author.orcid | |
| authorships[17].author.display_name | Abulhair Saparov |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Saparov, Abulhair |
| authorships[17].is_corresponding | False |
| authorships[18].author.id | https://openalex.org/A5107274823 |
| authorships[18].author.orcid | https://orcid.org/0000-0003-0357-0888 |
| authorships[18].author.display_name | Haonan Li |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Li, Haonan |
| authorships[18].is_corresponding | False |
| authorships[19].author.id | https://openalex.org/A5007476482 |
| authorships[19].author.orcid | |
| authorships[19].author.display_name | Taylor W. Killian |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Killian, Taylor W. |
| authorships[19].is_corresponding | False |
| authorships[20].author.id | https://openalex.org/A5026283694 |
| authorships[20].author.orcid | https://orcid.org/0000-0003-0153-6811 |
| authorships[20].author.display_name | Mikhail Yurochkin |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Yurochkin, Mikhail |
| authorships[20].is_corresponding | False |
| authorships[21].author.id | https://openalex.org/A5029648803 |
| authorships[21].author.orcid | |
| authorships[21].author.display_name | Zhengzhong Liu |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Liu, Zhengzhong |
| authorships[21].is_corresponding | False |
| authorships[22].author.id | https://openalex.org/A5009547049 |
| authorships[22].author.orcid | https://orcid.org/0009-0005-9158-4201 |
| authorships[22].author.display_name | Eric P. Xing |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Xing, Eric P. |
| authorships[22].is_corresponding | False |
| authorships[23].author.id | https://openalex.org/A5114674037 |
| authorships[23].author.orcid | |
| authorships[23].author.display_name | Zhiting Hu |
| authorships[23].author_position | last |
| authorships[23].raw_author_name | Hu, Zhiting |
| authorships[23].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.14965 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10456 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.886900007724762 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Multi-Agent Systems and Negotiation |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.14965 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.14965 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.14965 |
| primary_location.id | pmh:oai:arXiv.org:2506.14965 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.14965 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.14965 |
| publication_date | 2025-06-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 36 |
| abstract_inverted_index.a | 6, 56, 128 |
| abstract_inverted_index.RL | 46, 58, 89, 100, 117, 144, 166 |
| abstract_inverted_index.We | 53, 210, 236 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.by | 197 |
| abstract_inverted_index.in | 40, 99, 233 |
| abstract_inverted_index.is | 167 |
| abstract_inverted_index.of | 29, 43, 61, 221 |
| abstract_inverted_index.on | 22, 92, 201, 226 |
| abstract_inverted_index.to | 9, 33, 83, 159, 169, 231, 244 |
| abstract_inverted_index.we | 94, 175 |
| abstract_inverted_index.92K | 62 |
| abstract_inverted_index.For | 110 |
| abstract_inverted_index.LLM | 102 |
| abstract_inverted_index.and | 24, 73, 81, 86, 104, 154, 178, 199, 241 |
| abstract_inverted_index.at: | 248 |
| abstract_inverted_index.for | 88, 101 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.its | 30 |
| abstract_inverted_index.key | 37 |
| abstract_inverted_index.our | 27, 125, 202, 214 |
| abstract_inverted_index.six | 66, 207 |
| abstract_inverted_index.the | 41, 218 |
| abstract_inverted_index.two | 180 |
| abstract_inverted_index.yet | 16 |
| abstract_inverted_index.(RL) | 2 |
| abstract_inverted_index.6.7% | 200 |
| abstract_inverted_index.7.9% | 198 |
| abstract_inverted_index.also | 211 |
| abstract_inverted_index.base | 223 |
| abstract_inverted_index.best | 195 |
| abstract_inverted_index.code | 243 |
| abstract_inverted_index.from | 122, 142 |
| abstract_inverted_index.lack | 42 |
| abstract_inverted_index.less | 229 |
| abstract_inverted_index.lies | 39 |
| abstract_inverted_index.math | 23 |
| abstract_inverted_index.more | 129 |
| abstract_inverted_index.most | 17 |
| abstract_inverted_index.open | 18, 187 |
| abstract_inverted_index.seen | 134 |
| abstract_inverted_index.show | 212 |
| abstract_inverted_index.that | 116, 165, 182, 213 |
| abstract_inverted_index.with | 148, 190 |
| abstract_inverted_index.work | 114 |
| abstract_inverted_index.(LLM) | 14 |
| abstract_inverted_index.Based | 91 |
| abstract_inverted_index.Code, | 69, 138 |
| abstract_inverted_index.Guru, | 55, 93 |
| abstract_inverted_index.among | 186 |
| abstract_inverted_index.built | 75 |
| abstract_inverted_index.code, | 25 |
| abstract_inverted_index.data, | 193, 238 |
| abstract_inverted_index.data. | 235 |
| abstract_inverted_index.focus | 20 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.model | 13 |
| abstract_inverted_index.prior | 113 |
| abstract_inverted_index.skill | 172 |
| abstract_inverted_index.suite | 205 |
| abstract_inverted_index.tasks | 228 |
| abstract_inverted_index.their | 222 |
| abstract_inverted_index.while | 112, 146 |
| abstract_inverted_index.(Math, | 137 |
| abstract_inverted_index.Logic, | 71 |
| abstract_inverted_index.Pass@k | 219 |
| abstract_inverted_index.across | 49, 108, 206 |
| abstract_inverted_index.appear | 232 |
| abstract_inverted_index.corpus | 60 |
| abstract_inverted_index.during | 135 |
| abstract_inverted_index.easily | 140 |
| abstract_inverted_index.ensure | 84 |
| abstract_inverted_index.gains, | 163 |
| abstract_inverted_index.likely | 168, 230 |
| abstract_inverted_index.models | 181, 188, 215 |
| abstract_inverted_index.reveal | 127 |
| abstract_inverted_index.reward | 47, 78 |
| abstract_inverted_index.(Logic, | 152 |
| abstract_inverted_index.17-task | 203 |
| abstract_inverted_index.Guru-7B | 177 |
| abstract_inverted_index.achieve | 160, 183 |
| abstract_inverted_index.benefit | 141 |
| abstract_inverted_index.broader | 31 |
| abstract_inverted_index.complex | 227 |
| abstract_inverted_index.curated | 57 |
| abstract_inverted_index.design, | 79 |
| abstract_inverted_index.diverse | 50 |
| abstract_inverted_index.domains | 132, 147 |
| abstract_inverted_index.efforts | 19 |
| abstract_inverted_index.elicits | 119 |
| abstract_inverted_index.emerged | 4 |
| abstract_inverted_index.general | 34 |
| abstract_inverted_index.genuine | 171 |
| abstract_inverted_index.improve | 10, 217 |
| abstract_inverted_index.limited | 149 |
| abstract_inverted_index.models, | 124, 224, 239 |
| abstract_inverted_index.nuanced | 130 |
| abstract_inverted_index.observe | 105 |
| abstract_inverted_index.present | 176 |
| abstract_inverted_index.release | 237 |
| abstract_inverted_index.require | 156 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.revisit | 96 |
| abstract_inverted_index.signals | 48 |
| abstract_inverted_index.through | 76 |
| abstract_inverted_index.Finally, | 174 |
| abstract_inverted_index.Science) | 139 |
| abstract_inverted_index.Science, | 70 |
| abstract_inverted_index.Tabular) | 155 |
| abstract_inverted_index.approach | 8 |
| abstract_inverted_index.domains. | 52, 109, 209 |
| abstract_inverted_index.example, | 111 |
| abstract_inverted_index.examples | 64 |
| abstract_inverted_index.existing | 120 |
| abstract_inverted_index.exposure | 151 |
| abstract_inverted_index.findings | 98 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.limiting | 26 |
| abstract_inverted_index.narrowly | 21 |
| abstract_inverted_index.pattern: | 131 |
| abstract_inverted_index.publicly | 191 |
| abstract_inverted_index.scalable | 45 |
| abstract_inverted_index.spanning | 65 |
| abstract_inverted_index.suggests | 115 |
| abstract_inverted_index.training | 158, 240 |
| abstract_inverted_index.Guru-32B, | 179 |
| abstract_inverted_index.available | 192 |
| abstract_inverted_index.baselines | 196 |
| abstract_inverted_index.challenge | 38 |
| abstract_inverted_index.filtering | 82 |
| abstract_inverted_index.in-domain | 157 |
| abstract_inverted_index.introduce | 54 |
| abstract_inverted_index.knowledge | 121 |
| abstract_inverted_index.primarily | 118 |
| abstract_inverted_index.promising | 7 |
| abstract_inverted_index.reasoning | 51, 59, 67, 103, 208, 247 |
| abstract_inverted_index.reliable, | 44 |
| abstract_inverted_index.training, | 145 |
| abstract_inverted_index.training. | 90 |
| abstract_inverted_index.variation | 107 |
| abstract_inverted_index.RL-trained | 189 |
| abstract_inverted_index.evaluation | 204, 242 |
| abstract_inverted_index.facilitate | 170, 245 |
| abstract_inverted_index.frequently | 133 |
| abstract_inverted_index.meaningful | 161 |
| abstract_inverted_index.pretrained | 123 |
| abstract_inverted_index.reasoning, | 15 |
| abstract_inverted_index.reasoning. | 35 |
| abstract_inverted_index.suggesting | 164 |
| abstract_inverted_index.verifiable | 63 |
| abstract_inverted_index.Simulation, | 72, 153 |
| abstract_inverted_index.effectively | 216 |
| abstract_inverted_index.established | 97 |
| abstract_inverted_index.performance | 162, 185, 220 |
| abstract_inverted_index.pretraining | 136, 150, 234 |
| abstract_inverted_index.reliability | 85 |
| abstract_inverted_index.significant | 106 |
| abstract_inverted_index.acquisition. | 173 |
| abstract_inverted_index.cross-domain | 143 |
| abstract_inverted_index.particularly | 225 |
| abstract_inverted_index.Reinforcement | 0 |
| abstract_inverted_index.Tabular--each | 74 |
| abstract_inverted_index.applicability | 32 |
| abstract_inverted_index.effectiveness | 87 |
| abstract_inverted_index.outperforming | 194 |
| abstract_inverted_index.understanding | 28 |
| abstract_inverted_index.deduplication, | 80 |
| abstract_inverted_index.domains--Math, | 68 |
| abstract_inverted_index.systematically | 95 |
| abstract_inverted_index.domain-specific | 77 |
| abstract_inverted_index.general-purpose | 246 |
| abstract_inverted_index.state-of-the-art | 184 |
| abstract_inverted_index.https://github.com/LLM360/Reasoning360 | 249 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 24 |
| citation_normalized_percentile |