Revisiting Weakly Supervised Pre-Training of Visual Perception Models Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2201.08371
Model pre-training is a cornerstone of modern visual recognition systems. Although fully supervised pre-training on datasets like ImageNet is still the de-facto standard, recent studies suggest that large-scale weakly supervised pre-training can outperform fully supervised approaches. This paper revisits weakly-supervised pre-training of models using hashtag supervision with modern versions of residual networks and the largest-ever dataset of images and corresponding hashtags. We study the performance of the resulting models in various transfer-learning settings including zero-shot transfer. We also compare our models with those obtained via large-scale self-supervised learning. We find our weakly-supervised models to be very competitive across all settings, and find they substantially outperform their self-supervised counterparts. We also include an investigation into whether our models learned potentially troubling associations or stereotypes. Overall, our results provide a compelling argument for the use of weakly supervised learning in the development of visual recognition systems. Our models, Supervised Weakly through hashtAGs (SWAG), are available publicly.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2201.08371
- https://arxiv.org/pdf/2201.08371
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221160932
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221160932Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2201.08371Digital Object Identifier
- Title
-
Revisiting Weakly Supervised Pre-Training of Visual Perception ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-20Full publication date if available
- Authors
-
Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Buğra Gedik, Raj Prateek Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, Laurens van der MaatenList of authors in order
- Landing page
-
https://arxiv.org/abs/2201.08371Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2201.08371Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2201.08371Direct OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligence, Supervised learning, De facto, Transfer of learning, Scale (ratio), Artificial neural network, Political science, Quantum mechanics, Law, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221160932 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2201.08371 |
| ids.doi | https://doi.org/10.48550/arxiv.2201.08371 |
| ids.openalex | https://openalex.org/W4221160932 |
| fwci | |
| type | preprint |
| title | Revisiting Weakly Supervised Pre-Training of Visual Perception Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9848999977111816 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7246370315551758 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6873137950897217 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.676211416721344 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C136389625 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6244033575057983 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[3].display_name | Supervised learning |
| concepts[4].id | https://openalex.org/C2992317946 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4740331470966339 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q712144 |
| concepts[4].display_name | De facto |
| concepts[5].id | https://openalex.org/C150899416 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44632384181022644 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[5].display_name | Transfer of learning |
| concepts[6].id | https://openalex.org/C2778755073 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4336664080619812 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[6].display_name | Scale (ratio) |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.10211166739463806 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C17744445 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[8].display_name | Political science |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C199539241 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[10].display_name | Law |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7246370315551758 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.6873137950897217 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.676211416721344 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/supervised-learning |
| keywords[3].score | 0.6244033575057983 |
| keywords[3].display_name | Supervised learning |
| keywords[4].id | https://openalex.org/keywords/de-facto |
| keywords[4].score | 0.4740331470966339 |
| keywords[4].display_name | De facto |
| keywords[5].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[5].score | 0.44632384181022644 |
| keywords[5].display_name | Transfer of learning |
| keywords[6].id | https://openalex.org/keywords/scale |
| keywords[6].score | 0.4336664080619812 |
| keywords[6].display_name | Scale (ratio) |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.10211166739463806 |
| keywords[7].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2201.08371 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2201.08371 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2201.08371 |
| locations[1].id | doi:10.48550/arxiv.2201.08371 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2201.08371 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5060023106 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mannat Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Singh, Mannat |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033942765 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Laura Gustafson |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gustafson, Laura |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038119134 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aaron Adcock |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adcock, Aaron |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068888013 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Vinicius de Freitas Reis |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Reis, Vinicius de Freitas |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5001375267 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0622-1141 |
| authorships[4].author.display_name | Buğra Gedik |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gedik, Bugra |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5063776582 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Raj Prateek Kosaraju |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kosaraju, Raj Prateek |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5068664439 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1429-4551 |
| authorships[6].author.display_name | Dhruv Mahajan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mahajan, Dhruv |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5049246408 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Ross Girshick |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Girshick, Ross |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5057866698 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Piotr Dollár |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Dollár, Piotr |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5109065097 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Laurens van der Maaten |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | van der Maaten, Laurens |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2201.08371 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Revisiting Weakly Supervised Pre-Training of Visual Perception Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2807906686, https://openalex.org/W2794909825, https://openalex.org/W4247715995, https://openalex.org/W2594962586, https://openalex.org/W2518047880, https://openalex.org/W3175075103, https://openalex.org/W4285328440, https://openalex.org/W4390062853, https://openalex.org/W4389256085, https://openalex.org/W4313644201 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2201.08371 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2201.08371 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2201.08371 |
| primary_location.id | pmh:oai:arXiv.org:2201.08371 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2201.08371 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2201.08371 |
| publication_date | 2022-01-20 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 127 |
| abstract_inverted_index.We | 61, 76, 88, 108 |
| abstract_inverted_index.an | 111 |
| abstract_inverted_index.be | 94 |
| abstract_inverted_index.in | 69, 137 |
| abstract_inverted_index.is | 2, 18 |
| abstract_inverted_index.of | 5, 41, 49, 56, 65, 133, 140 |
| abstract_inverted_index.on | 14 |
| abstract_inverted_index.or | 121 |
| abstract_inverted_index.to | 93 |
| abstract_inverted_index.Our | 144 |
| abstract_inverted_index.all | 98 |
| abstract_inverted_index.and | 52, 58, 100 |
| abstract_inverted_index.are | 151 |
| abstract_inverted_index.can | 31 |
| abstract_inverted_index.for | 130 |
| abstract_inverted_index.our | 79, 90, 115, 124 |
| abstract_inverted_index.the | 20, 53, 63, 66, 131, 138 |
| abstract_inverted_index.use | 132 |
| abstract_inverted_index.via | 84 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.also | 77, 109 |
| abstract_inverted_index.find | 89, 101 |
| abstract_inverted_index.into | 113 |
| abstract_inverted_index.like | 16 |
| abstract_inverted_index.that | 26 |
| abstract_inverted_index.they | 102 |
| abstract_inverted_index.very | 95 |
| abstract_inverted_index.with | 46, 81 |
| abstract_inverted_index.Model | 0 |
| abstract_inverted_index.fully | 11, 33 |
| abstract_inverted_index.paper | 37 |
| abstract_inverted_index.still | 19 |
| abstract_inverted_index.study | 62 |
| abstract_inverted_index.their | 105 |
| abstract_inverted_index.those | 82 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.Weakly | 147 |
| abstract_inverted_index.across | 97 |
| abstract_inverted_index.images | 57 |
| abstract_inverted_index.models | 42, 68, 80, 92, 116 |
| abstract_inverted_index.modern | 6, 47 |
| abstract_inverted_index.recent | 23 |
| abstract_inverted_index.visual | 7, 141 |
| abstract_inverted_index.weakly | 28, 134 |
| abstract_inverted_index.(SWAG), | 150 |
| abstract_inverted_index.compare | 78 |
| abstract_inverted_index.dataset | 55 |
| abstract_inverted_index.hashtag | 44 |
| abstract_inverted_index.include | 110 |
| abstract_inverted_index.learned | 117 |
| abstract_inverted_index.models, | 145 |
| abstract_inverted_index.provide | 126 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.studies | 24 |
| abstract_inverted_index.suggest | 25 |
| abstract_inverted_index.through | 148 |
| abstract_inverted_index.various | 70 |
| abstract_inverted_index.whether | 114 |
| abstract_inverted_index.Although | 10 |
| abstract_inverted_index.ImageNet | 17 |
| abstract_inverted_index.Overall, | 123 |
| abstract_inverted_index.argument | 129 |
| abstract_inverted_index.datasets | 15 |
| abstract_inverted_index.de-facto | 21 |
| abstract_inverted_index.hashtAGs | 149 |
| abstract_inverted_index.learning | 136 |
| abstract_inverted_index.networks | 51 |
| abstract_inverted_index.obtained | 83 |
| abstract_inverted_index.residual | 50 |
| abstract_inverted_index.revisits | 38 |
| abstract_inverted_index.settings | 72 |
| abstract_inverted_index.systems. | 9, 143 |
| abstract_inverted_index.versions | 48 |
| abstract_inverted_index.available | 152 |
| abstract_inverted_index.hashtags. | 60 |
| abstract_inverted_index.including | 73 |
| abstract_inverted_index.learning. | 87 |
| abstract_inverted_index.publicly. | 153 |
| abstract_inverted_index.resulting | 67 |
| abstract_inverted_index.settings, | 99 |
| abstract_inverted_index.standard, | 22 |
| abstract_inverted_index.transfer. | 75 |
| abstract_inverted_index.troubling | 119 |
| abstract_inverted_index.zero-shot | 74 |
| abstract_inverted_index.Supervised | 146 |
| abstract_inverted_index.compelling | 128 |
| abstract_inverted_index.outperform | 32, 104 |
| abstract_inverted_index.supervised | 12, 29, 34, 135 |
| abstract_inverted_index.approaches. | 35 |
| abstract_inverted_index.competitive | 96 |
| abstract_inverted_index.cornerstone | 4 |
| abstract_inverted_index.development | 139 |
| abstract_inverted_index.large-scale | 27, 85 |
| abstract_inverted_index.performance | 64 |
| abstract_inverted_index.potentially | 118 |
| abstract_inverted_index.recognition | 8, 142 |
| abstract_inverted_index.supervision | 45 |
| abstract_inverted_index.associations | 120 |
| abstract_inverted_index.largest-ever | 54 |
| abstract_inverted_index.pre-training | 1, 13, 30, 40 |
| abstract_inverted_index.stereotypes. | 122 |
| abstract_inverted_index.corresponding | 59 |
| abstract_inverted_index.counterparts. | 107 |
| abstract_inverted_index.investigation | 112 |
| abstract_inverted_index.substantially | 103 |
| abstract_inverted_index.self-supervised | 86, 106 |
| abstract_inverted_index.transfer-learning | 71 |
| abstract_inverted_index.weakly-supervised | 39, 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |