Reward driven discovery of the optimal microstructure representations with invariant variational autoencoders Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.00243
Microscopy techniques generate vast amounts of complex image data that in principle can be used to discover simpler, interpretable, and parsimonious forms to reveal the underlying physical structures, such as elementary building blocks in molecular systems or order parameters and phases in crystalline materials. Variational Autoencoders (VAEs) provide a powerful means of constructing such low-dimensional representations, but their performance heavily depends on multiple non-myopic design choices, which are often optimized through trial-and-error and empirical analysis. To enable automated and unbiased optimization of VAE workflows, we investigated reward-based strategies for evaluating latent space representations. Using Piezoresponse Force Microscopy data as a model system, we examined multiple policies and reward functions that can serve as a foundation for automated optimization. Our analysis shows that approximating the latent space with Gaussian Mixture Models (GMM) and Bayesian Gaussian Mixture Models (BGMM) provides a strong basis for constructing reward functions capable of estimating model efficiency and guiding the search for optimal parsimonious representations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.00243
- https://arxiv.org/pdf/2510.00243
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414806834
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414806834Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.00243Digital Object Identifier
- Title
-
Reward driven discovery of the optimal microstructure representations with invariant variational autoencodersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-30Full publication date if available
- Authors
-
Boris N. Slautin, Kamyar Barakati, Hiroshi Funakubo, Maxim Ziatdinov, Vladimir V. Shvartsman, Doru C. Lupascu, Sergei V. KalininList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.00243Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.00243Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.00243Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414806834 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.00243 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.00243 |
| ids.openalex | https://openalex.org/W4414806834 |
| fwci | |
| type | preprint |
| title | Reward driven discovery of the optimal microstructure representations with invariant variational autoencoders |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11201 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9266999959945679 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Metallurgy and Material Forming |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.00243 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.00243 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.00243 |
| locations[1].id | doi:10.48550/arxiv.2510.00243 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.00243 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061740776 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1237-7070 |
| authorships[0].author.display_name | Boris N. Slautin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Slautin, Boris N. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043040873 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3487-6652 |
| authorships[1].author.display_name | Kamyar Barakati |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Barakati, Kamyar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023888355 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1106-200X |
| authorships[2].author.display_name | Hiroshi Funakubo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Funakubo, Hiroshi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5013879711 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2570-4592 |
| authorships[3].author.display_name | Maxim Ziatdinov |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ziatdinov, Maxim A. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058631175 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7155-2473 |
| authorships[4].author.display_name | Vladimir V. Shvartsman |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shvartsman, Vladimir V. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5042352170 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6895-1334 |
| authorships[5].author.display_name | Doru C. Lupascu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lupascu, Doru C. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5048552375 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5354-6152 |
| authorships[6].author.display_name | Sergei V. Kalinin |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kalinin, Sergei V. |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.00243 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reward driven discovery of the optimal microstructure representations with invariant variational autoencoders |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11201 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9266999959945679 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Metallurgy and Material Forming |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.00243 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.00243 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.00243 |
| primary_location.id | pmh:oai:arXiv.org:2510.00243 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.00243 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.00243 |
| publication_date | 2025-09-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 48, 99, 113, 138 |
| abstract_inverted_index.To | 75 |
| abstract_inverted_index.as | 29, 98, 112 |
| abstract_inverted_index.be | 13 |
| abstract_inverted_index.in | 10, 33, 41 |
| abstract_inverted_index.of | 5, 51, 81, 146 |
| abstract_inverted_index.on | 61 |
| abstract_inverted_index.or | 36 |
| abstract_inverted_index.to | 15, 22 |
| abstract_inverted_index.we | 84, 102 |
| abstract_inverted_index.Our | 118 |
| abstract_inverted_index.VAE | 82 |
| abstract_inverted_index.and | 19, 39, 72, 78, 106, 131, 150 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.but | 56 |
| abstract_inverted_index.can | 12, 110 |
| abstract_inverted_index.for | 88, 115, 141, 154 |
| abstract_inverted_index.the | 24, 123, 152 |
| abstract_inverted_index.data | 8, 97 |
| abstract_inverted_index.such | 28, 53 |
| abstract_inverted_index.that | 9, 109, 121 |
| abstract_inverted_index.used | 14 |
| abstract_inverted_index.vast | 3 |
| abstract_inverted_index.with | 126 |
| abstract_inverted_index.(GMM) | 130 |
| abstract_inverted_index.Force | 95 |
| abstract_inverted_index.Using | 93 |
| abstract_inverted_index.basis | 140 |
| abstract_inverted_index.forms | 21 |
| abstract_inverted_index.image | 7 |
| abstract_inverted_index.means | 50 |
| abstract_inverted_index.model | 100, 148 |
| abstract_inverted_index.often | 68 |
| abstract_inverted_index.order | 37 |
| abstract_inverted_index.serve | 111 |
| abstract_inverted_index.shows | 120 |
| abstract_inverted_index.space | 91, 125 |
| abstract_inverted_index.their | 57 |
| abstract_inverted_index.which | 66 |
| abstract_inverted_index.(BGMM) | 136 |
| abstract_inverted_index.(VAEs) | 46 |
| abstract_inverted_index.Models | 129, 135 |
| abstract_inverted_index.blocks | 32 |
| abstract_inverted_index.design | 64 |
| abstract_inverted_index.enable | 76 |
| abstract_inverted_index.latent | 90, 124 |
| abstract_inverted_index.phases | 40 |
| abstract_inverted_index.reveal | 23 |
| abstract_inverted_index.reward | 107, 143 |
| abstract_inverted_index.search | 153 |
| abstract_inverted_index.strong | 139 |
| abstract_inverted_index.Mixture | 128, 134 |
| abstract_inverted_index.amounts | 4 |
| abstract_inverted_index.capable | 145 |
| abstract_inverted_index.complex | 6 |
| abstract_inverted_index.depends | 60 |
| abstract_inverted_index.guiding | 151 |
| abstract_inverted_index.heavily | 59 |
| abstract_inverted_index.optimal | 155 |
| abstract_inverted_index.provide | 47 |
| abstract_inverted_index.system, | 101 |
| abstract_inverted_index.systems | 35 |
| abstract_inverted_index.through | 70 |
| abstract_inverted_index.Bayesian | 132 |
| abstract_inverted_index.Gaussian | 127, 133 |
| abstract_inverted_index.analysis | 119 |
| abstract_inverted_index.building | 31 |
| abstract_inverted_index.choices, | 65 |
| abstract_inverted_index.discover | 16 |
| abstract_inverted_index.examined | 103 |
| abstract_inverted_index.generate | 2 |
| abstract_inverted_index.multiple | 62, 104 |
| abstract_inverted_index.physical | 26 |
| abstract_inverted_index.policies | 105 |
| abstract_inverted_index.powerful | 49 |
| abstract_inverted_index.provides | 137 |
| abstract_inverted_index.simpler, | 17 |
| abstract_inverted_index.unbiased | 79 |
| abstract_inverted_index.analysis. | 74 |
| abstract_inverted_index.automated | 77, 116 |
| abstract_inverted_index.empirical | 73 |
| abstract_inverted_index.functions | 108, 144 |
| abstract_inverted_index.molecular | 34 |
| abstract_inverted_index.optimized | 69 |
| abstract_inverted_index.principle | 11 |
| abstract_inverted_index.Microscopy | 0, 96 |
| abstract_inverted_index.efficiency | 149 |
| abstract_inverted_index.elementary | 30 |
| abstract_inverted_index.estimating | 147 |
| abstract_inverted_index.evaluating | 89 |
| abstract_inverted_index.foundation | 114 |
| abstract_inverted_index.materials. | 43 |
| abstract_inverted_index.non-myopic | 63 |
| abstract_inverted_index.parameters | 38 |
| abstract_inverted_index.strategies | 87 |
| abstract_inverted_index.techniques | 1 |
| abstract_inverted_index.underlying | 25 |
| abstract_inverted_index.workflows, | 83 |
| abstract_inverted_index.Variational | 44 |
| abstract_inverted_index.crystalline | 42 |
| abstract_inverted_index.performance | 58 |
| abstract_inverted_index.structures, | 27 |
| abstract_inverted_index.Autoencoders | 45 |
| abstract_inverted_index.constructing | 52, 142 |
| abstract_inverted_index.investigated | 85 |
| abstract_inverted_index.optimization | 80 |
| abstract_inverted_index.parsimonious | 20, 156 |
| abstract_inverted_index.reward-based | 86 |
| abstract_inverted_index.Piezoresponse | 94 |
| abstract_inverted_index.approximating | 122 |
| abstract_inverted_index.optimization. | 117 |
| abstract_inverted_index.interpretable, | 18 |
| abstract_inverted_index.low-dimensional | 54 |
| abstract_inverted_index.trial-and-error | 71 |
| abstract_inverted_index.representations, | 55 |
| abstract_inverted_index.representations. | 92, 157 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |