RFA-YOLOv8: A Robust Tea Bud Detection Model with Adaptive Illumination Enhancement for Complex Orchard Environments Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/agriculture15181982
Accurate detection of tea shoots in natural environments is crucial for facilitating intelligent tea picking, field management, and automated harvesting. However, the detection performance of existing methods in complex scenes remains limited due to factors such as the small size, high density, severe overlap, and the similarity in color between tea shoots and the background. Consequently, this paper proposes an improved target detection algorithm, RFA-YOLOv8, based on YOLOv8, which aims to enhance the detection accuracy and robustness of tea shoots in natural environments. First, a self-constructed dataset containing images of tea shoots under various lighting conditions is created for model training and evaluation. Second, the multi-scale feature extraction capability of the model is enhanced by introducing RFCAConv along with the optimized SPPFCSPC module, while the spatial perception ability is improved by integrating the RFAConv module. Finally, the EIoU loss function is employed instead of CIoU to optimize the accuracy of the bounding box positioning. The experimental results demonstrate that the improved model achieves 84.1% and 58.7% in [email protected] and [email protected]:0.95, respectively, which represent increases of 3.6% and 5.5% over the original YOLOv8. Robustness is evaluated under strong, moderate, and dim lighting conditions, yielding improvements of 6.3% and 7.1%. In dim lighting, [email protected] and [email protected]:0.95 improve by 6.3% and 7.1%, respectively. The findings of this research provide an effective solution for the high-precision detection of tea shoots in complex lighting environments and offer theoretical and technical support for the development of smart tea gardens and automated picking.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/agriculture15181982
- OA Status
- gold
- Cited By
- 1
- References
- 45
- OpenAlex ID
- https://openalex.org/W4414349701
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414349701Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/agriculture15181982Digital Object Identifier
- Title
-
RFA-YOLOv8: A Robust Tea Bud Detection Model with Adaptive Illumination Enhancement for Complex Orchard EnvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-19Full publication date if available
- Authors
-
Qiuyue Yang, Jinan Gu, Tao Xiong, Qihang Wang, Juan Huang, Yue Xi, Zhongkai ShenList of authors in order
- Landing page
-
https://doi.org/10.3390/agriculture15181982Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/agriculture15181982Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414349701 |
|---|---|
| doi | https://doi.org/10.3390/agriculture15181982 |
| ids.doi | https://doi.org/10.3390/agriculture15181982 |
| ids.openalex | https://openalex.org/W4414349701 |
| fwci | 5.05254368 |
| type | article |
| title | RFA-YOLOv8: A Robust Tea Bud Detection Model with Adaptive Illumination Enhancement for Complex Orchard Environments |
| biblio.issue | 18 |
| biblio.volume | 15 |
| biblio.last_page | 1982 |
| biblio.first_page | 1982 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9847000241279602 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9776999950408936 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T11796 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9684000015258789 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Horticultural and Viticultural Research |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| language | en |
| locations[0].id | doi:10.3390/agriculture15181982 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202585 |
| locations[0].source.issn | 2077-0472 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-0472 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Agriculture |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Agriculture |
| locations[0].landing_page_url | https://doi.org/10.3390/agriculture15181982 |
| locations[1].id | pmh:oai:doaj.org/article:59263639792e4112bc2ef7266de72a04 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Agriculture, Vol 15, Iss 18, p 1982 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/59263639792e4112bc2ef7266de72a04 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5037840274 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6667-365X |
| authorships[0].author.display_name | Qiuyue Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[0].institutions[0].id | https://openalex.org/I115592961 |
| authorships[0].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jiangsu University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qiuyue Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[1].author.id | https://openalex.org/A5025549913 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2097-0739 |
| authorships[1].author.display_name | Jinan Gu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[1].institutions[0].id | https://openalex.org/I115592961 |
| authorships[1].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangsu University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinan Gu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[2].author.id | https://openalex.org/A5036357996 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tao Xiong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[2].institutions[0].id | https://openalex.org/I115592961 |
| authorships[2].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jiangsu University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tao Xiong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[3].author.id | https://openalex.org/A5076771535 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2158-0561 |
| authorships[3].author.display_name | Qihang Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[3].institutions[0].id | https://openalex.org/I115592961 |
| authorships[3].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jiangsu University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qihang Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[4].author.id | https://openalex.org/A5061333904 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1477-2602 |
| authorships[4].author.display_name | Juan Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[4].institutions[0].id | https://openalex.org/I115592961 |
| authorships[4].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jiangsu University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Juan Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[5].author.id | https://openalex.org/A5101969712 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2789-7674 |
| authorships[5].author.display_name | Yue Xi |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[5].institutions[0].id | https://openalex.org/I115592961 |
| authorships[5].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Jiangsu University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yidan Xi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[6].author.id | https://openalex.org/A5007769462 |
| authorships[6].author.orcid | https://orcid.org/0009-0000-7779-2542 |
| authorships[6].author.display_name | Zhongkai Shen |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[6].institutions[0].id | https://openalex.org/I115592961 |
| authorships[6].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Jiangsu University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhongkai Shen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/agriculture15181982 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RFA-YOLOv8: A Robust Tea Bud Detection Model with Adaptive Illumination Enhancement for Complex Orchard Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9847000241279602 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/agriculture15181982 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202585 |
| best_oa_location.source.issn | 2077-0472 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-0472 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Agriculture |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Agriculture |
| best_oa_location.landing_page_url | https://doi.org/10.3390/agriculture15181982 |
| primary_location.id | doi:10.3390/agriculture15181982 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202585 |
| primary_location.source.issn | 2077-0472 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-0472 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Agriculture |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Agriculture |
| primary_location.landing_page_url | https://doi.org/10.3390/agriculture15181982 |
| publication_date | 2025-09-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4391629548, https://openalex.org/W4380878087, https://openalex.org/W4405515134, https://openalex.org/W4384525429, https://openalex.org/W4404279560, https://openalex.org/W2909550368, https://openalex.org/W4321372135, https://openalex.org/W2894412160, https://openalex.org/W2102605133, https://openalex.org/W1536680647, https://openalex.org/W639708223, https://openalex.org/W4386076325, https://openalex.org/W4403770406, https://openalex.org/W4403479783, https://openalex.org/W2193145675, https://openalex.org/W4317486508, https://openalex.org/W4385220723, https://openalex.org/W3006185487, https://openalex.org/W2979462822, https://openalex.org/W3093692963, https://openalex.org/W2968416538, https://openalex.org/W2109255472, https://openalex.org/W2963150697, https://openalex.org/W2964241181, https://openalex.org/W2963351448, https://openalex.org/W2982770724, https://openalex.org/W3096609285, https://openalex.org/W4402754006, https://openalex.org/W4214588794, https://openalex.org/W4214520160, https://openalex.org/W4391418289, https://openalex.org/W2998301879, https://openalex.org/W4392005205, https://openalex.org/W4405239626, https://openalex.org/W3195905404, https://openalex.org/W4410069001, https://openalex.org/W3177052299, https://openalex.org/W4401067299, https://openalex.org/W4404212727, https://openalex.org/W4390646575, https://openalex.org/W4321248228, https://openalex.org/W4394814446, https://openalex.org/W3106250896, https://openalex.org/W4239338967, https://openalex.org/W4244977072 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 84 |
| abstract_inverted_index.In | 198 |
| abstract_inverted_index.an | 59, 216 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.by | 114, 130, 205 |
| abstract_inverted_index.in | 5, 27, 47, 80, 166, 226 |
| abstract_inverted_index.is | 8, 96, 112, 128, 140, 183 |
| abstract_inverted_index.of | 2, 24, 77, 89, 109, 143, 149, 174, 194, 212, 223, 239 |
| abstract_inverted_index.on | 66 |
| abstract_inverted_index.to | 33, 70, 145 |
| abstract_inverted_index.The | 154, 210 |
| abstract_inverted_index.and | 17, 44, 52, 75, 101, 164, 168, 176, 188, 196, 202, 207, 230, 233, 243 |
| abstract_inverted_index.box | 152 |
| abstract_inverted_index.dim | 189, 199 |
| abstract_inverted_index.due | 32 |
| abstract_inverted_index.for | 10, 98, 219, 236 |
| abstract_inverted_index.tea | 3, 13, 50, 78, 90, 224, 241 |
| abstract_inverted_index.the | 21, 37, 45, 53, 72, 104, 110, 119, 124, 132, 136, 147, 150, 159, 179, 220, 237 |
| abstract_inverted_index.3.6% | 175 |
| abstract_inverted_index.5.5% | 177 |
| abstract_inverted_index.6.3% | 195, 206 |
| abstract_inverted_index.CIoU | 144 |
| abstract_inverted_index.EIoU | 137 |
| abstract_inverted_index.aims | 69 |
| abstract_inverted_index.high | 40 |
| abstract_inverted_index.loss | 138 |
| abstract_inverted_index.over | 178 |
| abstract_inverted_index.such | 35 |
| abstract_inverted_index.that | 158 |
| abstract_inverted_index.this | 56, 213 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.58.7% | 165 |
| abstract_inverted_index.7.1%, | 208 |
| abstract_inverted_index.7.1%. | 197 |
| abstract_inverted_index.84.1% | 163 |
| abstract_inverted_index.along | 117 |
| abstract_inverted_index.based | 65 |
| abstract_inverted_index.color | 48 |
| abstract_inverted_index.field | 15 |
| abstract_inverted_index.model | 99, 111, 161 |
| abstract_inverted_index.offer | 231 |
| abstract_inverted_index.paper | 57 |
| abstract_inverted_index.size, | 39 |
| abstract_inverted_index.small | 38 |
| abstract_inverted_index.smart | 240 |
| abstract_inverted_index.under | 92, 185 |
| abstract_inverted_index.which | 68, 171 |
| abstract_inverted_index.while | 123 |
| abstract_inverted_index.First, | 83 |
| abstract_inverted_index.images | 88 |
| abstract_inverted_index.scenes | 29 |
| abstract_inverted_index.severe | 42 |
| abstract_inverted_index.shoots | 4, 51, 79, 91, 225 |
| abstract_inverted_index.target | 61 |
| abstract_inverted_index.RFAConv | 133 |
| abstract_inverted_index.Second, | 103 |
| abstract_inverted_index.YOLOv8, | 67 |
| abstract_inverted_index.YOLOv8. | 181 |
| abstract_inverted_index.ability | 127 |
| abstract_inverted_index.between | 49 |
| abstract_inverted_index.complex | 28, 227 |
| abstract_inverted_index.created | 97 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.dataset | 86 |
| abstract_inverted_index.enhance | 71 |
| abstract_inverted_index.factors | 34 |
| abstract_inverted_index.feature | 106 |
| abstract_inverted_index.gardens | 242 |
| abstract_inverted_index.improve | 204 |
| abstract_inverted_index.instead | 142 |
| abstract_inverted_index.limited | 31 |
| [email protected] | 167, 201 |
| abstract_inverted_index.methods | 26 |
| abstract_inverted_index.module, | 122 |
| abstract_inverted_index.module. | 134 |
| abstract_inverted_index.natural | 6, 81 |
| abstract_inverted_index.provide | 215 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.results | 156 |
| abstract_inverted_index.spatial | 125 |
| abstract_inverted_index.strong, | 186 |
| abstract_inverted_index.support | 235 |
| abstract_inverted_index.various | 93 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Finally, | 135 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.RFCAConv | 116 |
| abstract_inverted_index.SPPFCSPC | 121 |
| abstract_inverted_index.accuracy | 74, 148 |
| abstract_inverted_index.achieves | 162 |
| abstract_inverted_index.bounding | 151 |
| abstract_inverted_index.density, | 41 |
| abstract_inverted_index.employed | 141 |
| abstract_inverted_index.enhanced | 113 |
| abstract_inverted_index.existing | 25 |
| abstract_inverted_index.findings | 211 |
| abstract_inverted_index.function | 139 |
| abstract_inverted_index.improved | 60, 129, 160 |
| abstract_inverted_index.lighting | 94, 190, 228 |
| abstract_inverted_index.optimize | 146 |
| abstract_inverted_index.original | 180 |
| abstract_inverted_index.overlap, | 43 |
| abstract_inverted_index.picking, | 14 |
| abstract_inverted_index.picking. | 245 |
| abstract_inverted_index.proposes | 58 |
| abstract_inverted_index.research | 214 |
| abstract_inverted_index.solution | 218 |
| abstract_inverted_index.training | 100 |
| abstract_inverted_index.yielding | 192 |
| abstract_inverted_index.automated | 18, 244 |
| abstract_inverted_index.detection | 1, 22, 62, 73, 222 |
| abstract_inverted_index.effective | 217 |
| abstract_inverted_index.evaluated | 184 |
| abstract_inverted_index.increases | 173 |
| abstract_inverted_index.lighting, | 200 |
| abstract_inverted_index.moderate, | 187 |
| abstract_inverted_index.optimized | 120 |
| abstract_inverted_index.represent | 172 |
| abstract_inverted_index.technical | 234 |
| abstract_inverted_index.Robustness | 182 |
| abstract_inverted_index.algorithm, | 63 |
| abstract_inverted_index.capability | 108 |
| abstract_inverted_index.conditions | 95 |
| abstract_inverted_index.containing | 87 |
| abstract_inverted_index.extraction | 107 |
| abstract_inverted_index.perception | 126 |
| abstract_inverted_index.robustness | 76 |
| abstract_inverted_index.similarity | 46 |
| abstract_inverted_index.RFA-YOLOv8, | 64 |
| abstract_inverted_index.background. | 54 |
| abstract_inverted_index.conditions, | 191 |
| abstract_inverted_index.demonstrate | 157 |
| abstract_inverted_index.development | 238 |
| abstract_inverted_index.evaluation. | 102 |
| abstract_inverted_index.harvesting. | 19 |
| abstract_inverted_index.integrating | 131 |
| abstract_inverted_index.intelligent | 12 |
| abstract_inverted_index.introducing | 115 |
| abstract_inverted_index.management, | 16 |
| abstract_inverted_index.multi-scale | 105 |
| abstract_inverted_index.performance | 23 |
| abstract_inverted_index.theoretical | 232 |
| abstract_inverted_index.environments | 7, 229 |
| abstract_inverted_index.experimental | 155 |
| abstract_inverted_index.facilitating | 11 |
| abstract_inverted_index.improvements | 193 |
| [email protected]:0.95 | 203 |
| abstract_inverted_index.positioning. | 153 |
| abstract_inverted_index.Consequently, | 55 |
| abstract_inverted_index.environments. | 82 |
| [email protected]:0.95, | 169 |
| abstract_inverted_index.respectively, | 170 |
| abstract_inverted_index.respectively. | 209 |
| abstract_inverted_index.high-precision | 221 |
| abstract_inverted_index.self-constructed | 85 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.91396547 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |