Rice leaf disease detection using machine learning technique Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1063/5.0198893
India is one of the hugest rice cultivating country in the world. For thousands of years rice is a most major food, consequently every mankind depends on it directly and indirectly. But the Main hindrance in rice production is rice leaf diseases. It greatly reduces the production rate. Rice leaf diseases have specific symptoms that cannot be easily identified by usual human's eye. Using one of the image processing techniques, the rice leaf diseases are detected efficiently. In order to detect the diseased image Median Filter, K-means Clustering, GLCM and SVM classifier algorithms were proposed. Accuracy, Precision and ROC of SVM classifier were calculated as performance metrices. Around 97±2 % accuracy was achieved in this method. This paper discusses the efficient methodology for rice leaf disease detection. By using proposed method diseased leaves are identified at the early stage, which can aid farmers in preventing further damage to their crops.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0198893
- https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198893/19710307/020007_1_5.0198893.pdf
- OA Status
- bronze
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392452689
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392452689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0198893Digital Object Identifier
- Title
-
Rice leaf disease detection using machine learning techniqueWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
T. S. Sindhu, G. Chandrika, G Divya, R. Sumathi, Putta DurgaList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0198893Publisher landing page
- PDF URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198893/19710307/020007_1_5.0198893.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198893/19710307/020007_1_5.0198893.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392452689 |
|---|---|
| doi | https://doi.org/10.1063/5.0198893 |
| ids.doi | https://doi.org/10.1063/5.0198893 |
| ids.openalex | https://openalex.org/W4392452689 |
| fwci | 0.0 |
| type | article |
| title | Rice leaf disease detection using machine learning technique |
| biblio.issue | |
| biblio.volume | 3063 |
| biblio.last_page | 020007 |
| biblio.first_page | 020007 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9835000038146973 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9700999855995178 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6399164795875549 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.44081854820251465 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3472439646720886 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6399164795875549 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.44081854820251465 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.3472439646720886 |
| keywords[2].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1063/5.0198893 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764696622 |
| locations[0].source.issn | 0094-243X, 1551-7616, 1935-0465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-243X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AIP conference proceedings |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198893/19710307/020007_1_5.0198893.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Conference Proceedings |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0198893 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5053814288 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | T. S. Sindhu |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | T. S. Sindhu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[1].author.id | https://openalex.org/A5052864180 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | G. Chandrika |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | G. Chandrika |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[2].author.id | https://openalex.org/A5020449912 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | G Divya |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | G. Divya |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[3].author.id | https://openalex.org/A5101984838 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | R. Sumathi |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | R. Sumathi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[4].author.id | https://openalex.org/A5102851922 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2318-3327 |
| authorships[4].author.display_name | Putta Durga |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | P. Durga |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electronics and Communication Engineering, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, Ranipet, Tamilnadu, India. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198893/19710307/020007_1_5.0198893.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Rice leaf disease detection using machine learning technique |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1063/5.0198893 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764696622 |
| best_oa_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0094-243X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AIP conference proceedings |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198893/19710307/020007_1_5.0198893.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Conference Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0198893 |
| primary_location.id | doi:10.1063/5.0198893 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764696622 |
| primary_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-243X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AIP conference proceedings |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198893/19710307/020007_1_5.0198893.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Conference Proceedings |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0198893 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2972113714, https://openalex.org/W4245596311, https://openalex.org/W2786285907, https://openalex.org/W3210781381, https://openalex.org/W2787535799, https://openalex.org/W2568424517, https://openalex.org/W2476885932, https://openalex.org/W2124258049 |
| referenced_works_count | 8 |
| abstract_inverted_index.% | 109 |
| abstract_inverted_index.a | 18 |
| abstract_inverted_index.By | 127 |
| abstract_inverted_index.In | 77 |
| abstract_inverted_index.It | 42 |
| abstract_inverted_index.as | 104 |
| abstract_inverted_index.at | 135 |
| abstract_inverted_index.be | 56 |
| abstract_inverted_index.by | 59 |
| abstract_inverted_index.in | 9, 35, 113, 143 |
| abstract_inverted_index.is | 1, 17, 38 |
| abstract_inverted_index.it | 27 |
| abstract_inverted_index.of | 3, 14, 65, 99 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 79, 147 |
| abstract_inverted_index.But | 31 |
| abstract_inverted_index.For | 12 |
| abstract_inverted_index.ROC | 98 |
| abstract_inverted_index.SVM | 90, 100 |
| abstract_inverted_index.aid | 141 |
| abstract_inverted_index.and | 29, 89, 97 |
| abstract_inverted_index.are | 74, 133 |
| abstract_inverted_index.can | 140 |
| abstract_inverted_index.for | 122 |
| abstract_inverted_index.one | 2, 64 |
| abstract_inverted_index.the | 4, 10, 32, 45, 66, 70, 81, 119, 136 |
| abstract_inverted_index.was | 111 |
| abstract_inverted_index.GLCM | 88 |
| abstract_inverted_index.Main | 33 |
| abstract_inverted_index.Rice | 48 |
| abstract_inverted_index.This | 116 |
| abstract_inverted_index.eye. | 62 |
| abstract_inverted_index.have | 51 |
| abstract_inverted_index.leaf | 40, 49, 72, 124 |
| abstract_inverted_index.most | 19 |
| abstract_inverted_index.rice | 6, 16, 36, 39, 71, 123 |
| abstract_inverted_index.that | 54 |
| abstract_inverted_index.this | 114 |
| abstract_inverted_index.were | 93, 102 |
| abstract_inverted_index.97±2 | 108 |
| abstract_inverted_index.India | 0 |
| abstract_inverted_index.Using | 63 |
| abstract_inverted_index.early | 137 |
| abstract_inverted_index.every | 23 |
| abstract_inverted_index.food, | 21 |
| abstract_inverted_index.image | 67, 83 |
| abstract_inverted_index.major | 20 |
| abstract_inverted_index.order | 78 |
| abstract_inverted_index.paper | 117 |
| abstract_inverted_index.rate. | 47 |
| abstract_inverted_index.their | 148 |
| abstract_inverted_index.using | 128 |
| abstract_inverted_index.usual | 60 |
| abstract_inverted_index.which | 139 |
| abstract_inverted_index.years | 15 |
| abstract_inverted_index.Around | 107 |
| abstract_inverted_index.Median | 84 |
| abstract_inverted_index.cannot | 55 |
| abstract_inverted_index.crops. | 149 |
| abstract_inverted_index.damage | 146 |
| abstract_inverted_index.detect | 80 |
| abstract_inverted_index.easily | 57 |
| abstract_inverted_index.hugest | 5 |
| abstract_inverted_index.leaves | 132 |
| abstract_inverted_index.method | 130 |
| abstract_inverted_index.stage, | 138 |
| abstract_inverted_index.world. | 11 |
| abstract_inverted_index.Filter, | 85 |
| abstract_inverted_index.K-means | 86 |
| abstract_inverted_index.country | 8 |
| abstract_inverted_index.depends | 25 |
| abstract_inverted_index.disease | 125 |
| abstract_inverted_index.farmers | 142 |
| abstract_inverted_index.further | 145 |
| abstract_inverted_index.greatly | 43 |
| abstract_inverted_index.human's | 61 |
| abstract_inverted_index.mankind | 24 |
| abstract_inverted_index.method. | 115 |
| abstract_inverted_index.reduces | 44 |
| abstract_inverted_index.accuracy | 110 |
| abstract_inverted_index.achieved | 112 |
| abstract_inverted_index.detected | 75 |
| abstract_inverted_index.directly | 28 |
| abstract_inverted_index.diseased | 82, 131 |
| abstract_inverted_index.diseases | 50, 73 |
| abstract_inverted_index.proposed | 129 |
| abstract_inverted_index.specific | 52 |
| abstract_inverted_index.symptoms | 53 |
| abstract_inverted_index.Accuracy, | 95 |
| abstract_inverted_index.Precision | 96 |
| abstract_inverted_index.discusses | 118 |
| abstract_inverted_index.diseases. | 41 |
| abstract_inverted_index.efficient | 120 |
| abstract_inverted_index.hindrance | 34 |
| abstract_inverted_index.metrices. | 106 |
| abstract_inverted_index.proposed. | 94 |
| abstract_inverted_index.thousands | 13 |
| abstract_inverted_index.algorithms | 92 |
| abstract_inverted_index.calculated | 103 |
| abstract_inverted_index.classifier | 91, 101 |
| abstract_inverted_index.detection. | 126 |
| abstract_inverted_index.identified | 58, 134 |
| abstract_inverted_index.preventing | 144 |
| abstract_inverted_index.processing | 68 |
| abstract_inverted_index.production | 37, 46 |
| abstract_inverted_index.Clustering, | 87 |
| abstract_inverted_index.cultivating | 7 |
| abstract_inverted_index.indirectly. | 30 |
| abstract_inverted_index.methodology | 121 |
| abstract_inverted_index.performance | 105 |
| abstract_inverted_index.techniques, | 69 |
| abstract_inverted_index.consequently | 22 |
| abstract_inverted_index.efficiently. | 76 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.01689263 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |