RiSIM: River surface image monitoring software for quantifying floating macroplastic transport Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.watres.2025.124678
Reliable and continuous plastic monitoring in rivers is essential for quantifying plastic flux and guiding mitigation efforts. One effective strategy for observing floating plastic transport is image-based monitoring using deep learning models. We developed river surface image monitoring software (RiSIM) to quantify floating macroplastic transport through three core processes: (1) a template matching algorithm, which identifies matching areas in a frame that resemble a template given in the previous frame; (2) deep learning models for plastic detection, classification, and object tracking; and (3) the evaluation of plastic transport rate in terms of both quantity and mass. The RiSIM-derived plastic transport rates were validated through a mark-release-recapture experiment and in-situ visual observation under both non-flood and flood conditions. The temporal variability and composition of the plastic transport rate in terms of quantity and mass were in good agreement with the ground truth data (r = 0.91 and 0.80, respectively). And also, it remained valuable for capturing the temporal variability in plastic transport rate (r = 0.87) via the comparison with in-situ visual observation, indicating that the RiSIM is valuable for assessing the increase in plastic transport rate due to a flood event. In fact, we found a significant relationship (r2 = 0.36 for quantity; r2 = 0.27 for mass) between daily-mean plastic transport rates and river discharge during flood events over four months. Accordingly, the RiSIM, as a near-field remote sensing technology, is a powerful tool for quantifying plastic transport and managing mis-managed plastic waste in river environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.watres.2025.124678
- OA Status
- hybrid
- References
- 29
- OpenAlex ID
- https://openalex.org/W4414519103
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414519103Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.watres.2025.124678Digital Object Identifier
- Title
-
RiSIM: River surface image monitoring software for quantifying floating macroplastic transportWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-25Full publication date if available
- Authors
-
Tomoya Kataoka, Takushi Yoshida, Kenji Sasaki, Yoshio Kosuge, Yoshihiro Suzuki, Tim van EmmerikList of authors in order
- Landing page
-
https://doi.org/10.1016/j.watres.2025.124678Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.watres.2025.124678Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414519103 |
|---|---|
| doi | https://doi.org/10.1016/j.watres.2025.124678 |
| ids.doi | https://doi.org/10.1016/j.watres.2025.124678 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41027072 |
| ids.openalex | https://openalex.org/W4414519103 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D045483 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Rivers |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D004784 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Environmental Monitoring |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D012984 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Software |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D010969 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Plastics |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D055868 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Floods |
| type | article |
| title | RiSIM: River surface image monitoring software for quantifying floating macroplastic transport |
| biblio.issue | Pt B |
| biblio.volume | 288 |
| biblio.last_page | 124678 |
| biblio.first_page | 124678 |
| topics[0].id | https://openalex.org/T10753 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2310 |
| topics[0].subfield.display_name | Pollution |
| topics[0].display_name | Microplastics and Plastic Pollution |
| topics[1].id | https://openalex.org/T12697 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9444000124931335 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Water Quality Monitoring Technologies |
| is_xpac | False |
| apc_list.value | 4350 |
| apc_list.currency | USD |
| apc_list.value_usd | 4350 |
| apc_paid.value | 4350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4350 |
| language | en |
| locations[0].id | doi:10.1016/j.watres.2025.124678 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52566953 |
| locations[0].source.issn | 0043-1354, 1879-2448 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0043-1354 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Water Research |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Water Research |
| locations[0].landing_page_url | https://doi.org/10.1016/j.watres.2025.124678 |
| locations[1].id | pmid:41027072 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Water research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41027072 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5031949591 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2921-8041 |
| authorships[0].author.display_name | Tomoya Kataoka |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I43545212 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, Ehime University, Matsuyama, Japan; Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan. Electronic address: [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I43545212 |
| authorships[0].institutions[0].ror | https://ror.org/017hkng22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I43545212 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Ehime University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tomoya Kataoka |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil & Environmental Engineering, Ehime University, Matsuyama, Japan; Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan. Electronic address: [email protected]. |
| authorships[1].author.id | https://openalex.org/A5055248546 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Takushi Yoshida |
| authorships[1].affiliations[0].raw_affiliation_string | Business Planning and Development Division, Yachiyo Engineering Co., Ltd., Tokyo, Japan. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Takushi Yoshida |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Business Planning and Development Division, Yachiyo Engineering Co., Ltd., Tokyo, Japan. |
| authorships[2].author.id | https://openalex.org/A5110596000 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kenji Sasaki |
| authorships[2].affiliations[0].raw_affiliation_string | Business Planning and Development Division, Yachiyo Engineering Co., Ltd., Tokyo, Japan. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kenji Sasaki |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Business Planning and Development Division, Yachiyo Engineering Co., Ltd., Tokyo, Japan. |
| authorships[3].author.id | https://openalex.org/A5112421584 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yoshio Kosuge |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210118115 |
| authorships[3].affiliations[0].raw_affiliation_string | Environmental Consulting Department, Environmental Management Unit, JAPAN NUS Co., Ltd., Tokyo, Japan. |
| authorships[3].institutions[0].id | https://openalex.org/I4210118115 |
| authorships[3].institutions[0].ror | https://ror.org/02ns3pe91 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210118115 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Engineering Advancement Association of Japan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yoshinori Kosuge |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Environmental Consulting Department, Environmental Management Unit, JAPAN NUS Co., Ltd., Tokyo, Japan. |
| authorships[4].author.id | https://openalex.org/A5007909935 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1148-5379 |
| authorships[4].author.display_name | Yoshihiro Suzuki |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210118115 |
| authorships[4].affiliations[0].raw_affiliation_string | Environmental Consulting Department, Environmental Management Unit, JAPAN NUS Co., Ltd., Tokyo, Japan. |
| authorships[4].institutions[0].id | https://openalex.org/I4210118115 |
| authorships[4].institutions[0].ror | https://ror.org/02ns3pe91 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210118115 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Engineering Advancement Association of Japan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yoshihiro Suzuki |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Environmental Consulting Department, Environmental Management Unit, JAPAN NUS Co., Ltd., Tokyo, Japan. |
| authorships[5].author.id | https://openalex.org/A5023220319 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4773-9107 |
| authorships[5].author.display_name | Tim van Emmerik |
| authorships[5].countries | NL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I913481162 |
| authorships[5].affiliations[0].raw_affiliation_string | Wageningen University and Research, Hydrology and Environmental Hydraulics Group, Wageningen, The Netherlands. |
| authorships[5].institutions[0].id | https://openalex.org/I913481162 |
| authorships[5].institutions[0].ror | https://ror.org/04qw24q55 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I913481162 |
| authorships[5].institutions[0].country_code | NL |
| authorships[5].institutions[0].display_name | Wageningen University & Research |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tim H.M. van Emmerik |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Wageningen University and Research, Hydrology and Environmental Hydraulics Group, Wageningen, The Netherlands. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.watres.2025.124678 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RiSIM: River surface image monitoring software for quantifying floating macroplastic transport |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10753 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2310 |
| primary_topic.subfield.display_name | Pollution |
| primary_topic.display_name | Microplastics and Plastic Pollution |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.watres.2025.124678 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52566953 |
| best_oa_location.source.issn | 0043-1354, 1879-2448 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0043-1354 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Water Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Water Research |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.watres.2025.124678 |
| primary_location.id | doi:10.1016/j.watres.2025.124678 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52566953 |
| primary_location.source.issn | 0043-1354, 1879-2448 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0043-1354 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Water Research |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Water Research |
| primary_location.landing_page_url | https://doi.org/10.1016/j.watres.2025.124678 |
| publication_date | 2025-09-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4399532777, https://openalex.org/W2441445970, https://openalex.org/W4388524409, https://openalex.org/W4281840001, https://openalex.org/W3174269721, https://openalex.org/W4380360934, https://openalex.org/W3198376161, https://openalex.org/W4327918516, https://openalex.org/W4316590524, https://openalex.org/W3004529745, https://openalex.org/W4403681413, https://openalex.org/W4384938681, https://openalex.org/W3157788918, https://openalex.org/W2576589933, https://openalex.org/W3107427886, https://openalex.org/W3017005145, https://openalex.org/W4320495640, https://openalex.org/W4292876784, https://openalex.org/W3170478500, https://openalex.org/W4396951100, https://openalex.org/W4385737794, https://openalex.org/W4285024244, https://openalex.org/W4210434166, https://openalex.org/W4380785298, https://openalex.org/W3045509105, https://openalex.org/W4384944828, https://openalex.org/W2950703532, https://openalex.org/W3098744844, https://openalex.org/W2897503395 |
| referenced_works_count | 29 |
| abstract_inverted_index.= | 143, 163, 199, 204 |
| abstract_inverted_index.a | 50, 59, 63, 104, 188, 195, 226, 232 |
| abstract_inverted_index.(r | 142, 162 |
| abstract_inverted_index.In | 191 |
| abstract_inverted_index.We | 32 |
| abstract_inverted_index.as | 225 |
| abstract_inverted_index.in | 5, 58, 66, 89, 127, 134, 158, 182, 244 |
| abstract_inverted_index.is | 7, 25, 176, 231 |
| abstract_inverted_index.it | 150 |
| abstract_inverted_index.of | 85, 91, 122, 129 |
| abstract_inverted_index.to | 40, 187 |
| abstract_inverted_index.we | 193 |
| abstract_inverted_index.(1) | 49 |
| abstract_inverted_index.(2) | 70 |
| abstract_inverted_index.(3) | 82 |
| abstract_inverted_index.And | 148 |
| abstract_inverted_index.One | 17 |
| abstract_inverted_index.The | 96, 117 |
| abstract_inverted_index.and | 1, 13, 78, 81, 94, 107, 114, 120, 131, 145, 213, 239 |
| abstract_inverted_index.due | 186 |
| abstract_inverted_index.for | 9, 20, 74, 153, 178, 201, 206, 235 |
| abstract_inverted_index.the | 67, 83, 123, 138, 155, 166, 174, 180, 223 |
| abstract_inverted_index.via | 165 |
| abstract_inverted_index.0.27 | 205 |
| abstract_inverted_index.0.36 | 200 |
| abstract_inverted_index.0.91 | 144 |
| abstract_inverted_index.both | 92, 112 |
| abstract_inverted_index.core | 47 |
| abstract_inverted_index.data | 141 |
| abstract_inverted_index.deep | 29, 71 |
| abstract_inverted_index.flux | 12 |
| abstract_inverted_index.four | 220 |
| abstract_inverted_index.good | 135 |
| abstract_inverted_index.mass | 132 |
| abstract_inverted_index.over | 219 |
| abstract_inverted_index.rate | 88, 126, 161, 185 |
| abstract_inverted_index.that | 61, 173 |
| abstract_inverted_index.tool | 234 |
| abstract_inverted_index.were | 101, 133 |
| abstract_inverted_index.with | 137, 168 |
| abstract_inverted_index.0.80, | 146 |
| abstract_inverted_index.0.87) | 164 |
| abstract_inverted_index.RiSIM | 175 |
| abstract_inverted_index.also, | 149 |
| abstract_inverted_index.areas | 57 |
| abstract_inverted_index.fact, | 192 |
| abstract_inverted_index.flood | 115, 189, 217 |
| abstract_inverted_index.found | 194 |
| abstract_inverted_index.frame | 60 |
| abstract_inverted_index.given | 65 |
| abstract_inverted_index.image | 36 |
| abstract_inverted_index.mass) | 207 |
| abstract_inverted_index.mass. | 95 |
| abstract_inverted_index.rates | 100, 212 |
| abstract_inverted_index.river | 34, 214, 245 |
| abstract_inverted_index.terms | 90, 128 |
| abstract_inverted_index.three | 46 |
| abstract_inverted_index.truth | 140 |
| abstract_inverted_index.under | 111 |
| abstract_inverted_index.using | 28 |
| abstract_inverted_index.waste | 243 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.RiSIM, | 224 |
| abstract_inverted_index.during | 216 |
| abstract_inverted_index.event. | 190 |
| abstract_inverted_index.events | 218 |
| abstract_inverted_index.frame; | 69 |
| abstract_inverted_index.ground | 139 |
| abstract_inverted_index.models | 73 |
| abstract_inverted_index.object | 79 |
| abstract_inverted_index.remote | 228 |
| abstract_inverted_index.rivers | 6 |
| abstract_inverted_index.visual | 109, 170 |
| abstract_inverted_index.(RiSIM) | 39 |
| abstract_inverted_index.between | 208 |
| abstract_inverted_index.guiding | 14 |
| abstract_inverted_index.in-situ | 108, 169 |
| abstract_inverted_index.models. | 31 |
| abstract_inverted_index.months. | 221 |
| abstract_inverted_index.plastic | 3, 11, 23, 75, 86, 98, 124, 159, 183, 210, 237, 242 |
| abstract_inverted_index.sensing | 229 |
| abstract_inverted_index.surface | 35 |
| abstract_inverted_index.through | 45, 103 |
| abstract_inverted_index.Reliable | 0 |
| abstract_inverted_index.efforts. | 16 |
| abstract_inverted_index.floating | 22, 42 |
| abstract_inverted_index.increase | 181 |
| abstract_inverted_index.learning | 30, 72 |
| abstract_inverted_index.managing | 240 |
| abstract_inverted_index.matching | 52, 56 |
| abstract_inverted_index.powerful | 233 |
| abstract_inverted_index.previous | 68 |
| abstract_inverted_index.quantify | 41 |
| abstract_inverted_index.quantity | 93, 130 |
| abstract_inverted_index.remained | 151 |
| abstract_inverted_index.resemble | 62 |
| abstract_inverted_index.software | 38 |
| abstract_inverted_index.strategy | 19 |
| abstract_inverted_index.template | 51, 64 |
| abstract_inverted_index.temporal | 118, 156 |
| abstract_inverted_index.valuable | 152, 177 |
| abstract_inverted_index.agreement | 136 |
| abstract_inverted_index.assessing | 179 |
| abstract_inverted_index.capturing | 154 |
| abstract_inverted_index.developed | 33 |
| abstract_inverted_index.discharge | 215 |
| abstract_inverted_index.effective | 18 |
| abstract_inverted_index.essential | 8 |
| abstract_inverted_index.non-flood | 113 |
| abstract_inverted_index.observing | 21 |
| abstract_inverted_index.quantity; | 202 |
| abstract_inverted_index.tracking; | 80 |
| abstract_inverted_index.transport | 24, 44, 87, 99, 125, 160, 184, 211, 238 |
| abstract_inverted_index.validated | 102 |
| abstract_inverted_index.algorithm, | 53 |
| abstract_inverted_index.comparison | 167 |
| abstract_inverted_index.continuous | 2 |
| abstract_inverted_index.daily-mean | 209 |
| abstract_inverted_index.detection, | 76 |
| abstract_inverted_index.evaluation | 84 |
| abstract_inverted_index.experiment | 106 |
| abstract_inverted_index.identifies | 55 |
| abstract_inverted_index.indicating | 172 |
| abstract_inverted_index.mitigation | 15 |
| abstract_inverted_index.monitoring | 4, 27, 37 |
| abstract_inverted_index.near-field | 227 |
| abstract_inverted_index.processes: | 48 |
| abstract_inverted_index.composition | 121 |
| abstract_inverted_index.conditions. | 116 |
| abstract_inverted_index.image-based | 26 |
| abstract_inverted_index.mis-managed | 241 |
| abstract_inverted_index.observation | 110 |
| abstract_inverted_index.quantifying | 10, 236 |
| abstract_inverted_index.significant | 196 |
| abstract_inverted_index.technology, | 230 |
| abstract_inverted_index.variability | 119, 157 |
| abstract_inverted_index.Accordingly, | 222 |
| abstract_inverted_index.macroplastic | 43 |
| abstract_inverted_index.observation, | 171 |
| abstract_inverted_index.relationship | 197 |
| abstract_inverted_index.RiSIM-derived | 97 |
| abstract_inverted_index.environments. | 246 |
| abstract_inverted_index.r<sup>2</sup> | 203 |
| abstract_inverted_index.(r<sup>2</sup> | 198 |
| abstract_inverted_index.respectively). | 147 |
| abstract_inverted_index.classification, | 77 |
| abstract_inverted_index.mark-release-recapture | 105 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.42665621 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |