Risk-Sensitive Reinforcement Learning via Policy Gradient Search Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1810.09126
The objective in a traditional reinforcement learning (RL) problem is to find a policy that optimizes the expected value of a performance metric such as the infinite-horizon cumulative discounted or long-run average cost/reward. In practice, optimizing the expected value alone may not be satisfactory, in that it may be desirable to incorporate the notion of risk into the optimization problem formulation, either in the objective or as a constraint. Various risk measures have been proposed in the literature, e.g., exponential utility, variance, percentile performance, chance constraints, value at risk (quantile), conditional value-at-risk, prospect theory and its later enhancement, cumulative prospect theory. In this book, we consider risk-sensitive RL in two settings: one where the goal is to find a policy that optimizes the usual expected value objective while ensuring that a risk constraint is satisfied, and the other where the risk measure is the objective. We survey some of the recent work in this area specifically where policy gradient search is the solution approach. In the first risk-sensitive RL setting, we cover popular risk measures based on variance, conditional value-at-risk, and chance constraints, and present a template for policy gradient-based risk-sensitive RL algorithms using a Lagrangian formulation. For the setting where risk is incorporated directly into the objective function, we consider an exponential utility formulation, cumulative prospect theory, and coherent risk measures. This non-exhaustive survey aims to give a flavor of the challenges involved in solving risk-sensitive RL problems using policy gradient methods, as well as outlining some potential future research directions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1810.09126
- https://arxiv.org/pdf/1810.09126
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308351611
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308351611Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1810.09126Digital Object Identifier
- Title
-
Risk-Sensitive Reinforcement Learning via Policy Gradient SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-10-22Full publication date if available
- Authors
-
L. A. Prashanth, Michael C. FuList of authors in order
- Landing page
-
https://arxiv.org/abs/1810.09126Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1810.09126Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1810.09126Direct OA link when available
- Concepts
-
Cumulative prospect theory, Reinforcement learning, Risk measure, Expected shortfall, Value at risk, Metric (unit), Variance (accounting), Mathematical optimization, Exponential utility, Computer science, Exponential function, Risk management, Constraint (computer-aided design), Econometrics, Mathematics, Expected utility hypothesis, Statistics, Economics, Artificial intelligence, Finance, Accounting, Geometry, Mathematical analysis, Portfolio, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308351611 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1810.09126 |
| ids.doi | https://doi.org/10.48550/arxiv.1810.09126 |
| ids.openalex | https://openalex.org/W4308351611 |
| fwci | |
| type | preprint |
| title | Risk-Sensitive Reinforcement Learning via Policy Gradient Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12101 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9837999939918518 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Advanced Bandit Algorithms Research |
| topics[1].id | https://openalex.org/T10462 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9757000207901001 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Reinforcement Learning in Robotics |
| topics[2].id | https://openalex.org/T11413 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9496999979019165 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Risk and Portfolio Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779449553 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8377342224121094 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5194187 |
| concepts[0].display_name | Cumulative prospect theory |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6693971157073975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C2781472820 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6114764213562012 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2154759 |
| concepts[2].display_name | Risk measure |
| concepts[3].id | https://openalex.org/C5496284 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5383898019790649 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5420856 |
| concepts[3].display_name | Expected shortfall |
| concepts[4].id | https://openalex.org/C94128290 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5261173844337463 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q963287 |
| concepts[4].display_name | Value at risk |
| concepts[5].id | https://openalex.org/C176217482 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5141775608062744 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[5].display_name | Metric (unit) |
| concepts[6].id | https://openalex.org/C196083921 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4886360764503479 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[6].display_name | Variance (accounting) |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.48244863748550415 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C2778475510 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45113831758499146 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5421533 |
| concepts[8].display_name | Exponential utility |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4370565414428711 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C151376022 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4344756007194519 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q168698 |
| concepts[10].display_name | Exponential function |
| concepts[11].id | https://openalex.org/C32896092 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43382498621940613 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189447 |
| concepts[11].display_name | Risk management |
| concepts[12].id | https://openalex.org/C2776036281 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4197852313518524 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[12].display_name | Constraint (computer-aided design) |
| concepts[13].id | https://openalex.org/C149782125 |
| concepts[13].level | 1 |
| concepts[13].score | 0.36095130443573 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[13].display_name | Econometrics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3518524467945099 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C205706631 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3512606620788574 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2319304 |
| concepts[15].display_name | Expected utility hypothesis |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.235162615776062 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.2306009829044342 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.1523265540599823 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| concepts[19].id | https://openalex.org/C10138342 |
| concepts[19].level | 1 |
| concepts[19].score | 0.10169818997383118 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[19].display_name | Finance |
| concepts[20].id | https://openalex.org/C121955636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[20].display_name | Accounting |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| concepts[22].id | https://openalex.org/C134306372 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[22].display_name | Mathematical analysis |
| concepts[23].id | https://openalex.org/C2780821815 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q5340806 |
| concepts[23].display_name | Portfolio |
| concepts[24].id | https://openalex.org/C21547014 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[24].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/cumulative-prospect-theory |
| keywords[0].score | 0.8377342224121094 |
| keywords[0].display_name | Cumulative prospect theory |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.6693971157073975 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/risk-measure |
| keywords[2].score | 0.6114764213562012 |
| keywords[2].display_name | Risk measure |
| keywords[3].id | https://openalex.org/keywords/expected-shortfall |
| keywords[3].score | 0.5383898019790649 |
| keywords[3].display_name | Expected shortfall |
| keywords[4].id | https://openalex.org/keywords/value-at-risk |
| keywords[4].score | 0.5261173844337463 |
| keywords[4].display_name | Value at risk |
| keywords[5].id | https://openalex.org/keywords/metric |
| keywords[5].score | 0.5141775608062744 |
| keywords[5].display_name | Metric (unit) |
| keywords[6].id | https://openalex.org/keywords/variance |
| keywords[6].score | 0.4886360764503479 |
| keywords[6].display_name | Variance (accounting) |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.48244863748550415 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/exponential-utility |
| keywords[8].score | 0.45113831758499146 |
| keywords[8].display_name | Exponential utility |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.4370565414428711 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/exponential-function |
| keywords[10].score | 0.4344756007194519 |
| keywords[10].display_name | Exponential function |
| keywords[11].id | https://openalex.org/keywords/risk-management |
| keywords[11].score | 0.43382498621940613 |
| keywords[11].display_name | Risk management |
| keywords[12].id | https://openalex.org/keywords/constraint |
| keywords[12].score | 0.4197852313518524 |
| keywords[12].display_name | Constraint (computer-aided design) |
| keywords[13].id | https://openalex.org/keywords/econometrics |
| keywords[13].score | 0.36095130443573 |
| keywords[13].display_name | Econometrics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.3518524467945099 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/expected-utility-hypothesis |
| keywords[15].score | 0.3512606620788574 |
| keywords[15].display_name | Expected utility hypothesis |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.235162615776062 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/economics |
| keywords[17].score | 0.2306009829044342 |
| keywords[17].display_name | Economics |
| keywords[18].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[18].score | 0.1523265540599823 |
| keywords[18].display_name | Artificial intelligence |
| keywords[19].id | https://openalex.org/keywords/finance |
| keywords[19].score | 0.10169818997383118 |
| keywords[19].display_name | Finance |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1810.09126 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1810.09126 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1810.09126 |
| locations[1].id | doi:10.48550/arxiv.1810.09126 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1810.09126 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068379567 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | L. A. Prashanth |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A., Prashanth L. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5000889975 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2105-4932 |
| authorships[1].author.display_name | Michael C. Fu |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Fu, Michael |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1810.09126 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Risk-Sensitive Reinforcement Learning via Policy Gradient Search |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12101 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9837999939918518 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Advanced Bandit Algorithms Research |
| related_works | https://openalex.org/W799577184, https://openalex.org/W4301377905, https://openalex.org/W2408851247, https://openalex.org/W3121825436, https://openalex.org/W2950198523, https://openalex.org/W3122839946, https://openalex.org/W1982899954, https://openalex.org/W2031780815, https://openalex.org/W4308113911, https://openalex.org/W3122839706 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1810.09126 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1810.09126 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1810.09126 |
| primary_location.id | pmh:oai:arXiv.org:1810.09126 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1810.09126 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1810.09126 |
| publication_date | 2018-10-22 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 12, 20, 67, 118, 130, 185, 194, 228 |
| abstract_inverted_index.In | 33, 101, 164 |
| abstract_inverted_index.RL | 107, 168, 191, 237 |
| abstract_inverted_index.We | 145 |
| abstract_inverted_index.an | 211 |
| abstract_inverted_index.as | 24, 66, 243, 245 |
| abstract_inverted_index.at | 87 |
| abstract_inverted_index.be | 42, 48 |
| abstract_inverted_index.in | 2, 44, 62, 75, 108, 152, 234 |
| abstract_inverted_index.is | 9, 115, 133, 142, 160, 202 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.of | 19, 54, 148, 230 |
| abstract_inverted_index.on | 176 |
| abstract_inverted_index.or | 29, 65 |
| abstract_inverted_index.to | 10, 50, 116, 226 |
| abstract_inverted_index.we | 104, 170, 209 |
| abstract_inverted_index.For | 197 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 94, 135, 180, 183, 218 |
| abstract_inverted_index.for | 187 |
| abstract_inverted_index.its | 95 |
| abstract_inverted_index.may | 40, 47 |
| abstract_inverted_index.not | 41 |
| abstract_inverted_index.one | 111 |
| abstract_inverted_index.the | 16, 25, 36, 52, 57, 63, 76, 113, 122, 136, 139, 143, 149, 161, 165, 198, 206, 231 |
| abstract_inverted_index.two | 109 |
| abstract_inverted_index.(RL) | 7 |
| abstract_inverted_index.This | 222 |
| abstract_inverted_index.aims | 225 |
| abstract_inverted_index.area | 154 |
| abstract_inverted_index.been | 73 |
| abstract_inverted_index.find | 11, 117 |
| abstract_inverted_index.give | 227 |
| abstract_inverted_index.goal | 114 |
| abstract_inverted_index.have | 72 |
| abstract_inverted_index.into | 56, 205 |
| abstract_inverted_index.risk | 55, 70, 88, 131, 140, 173, 201, 220 |
| abstract_inverted_index.some | 147, 247 |
| abstract_inverted_index.such | 23 |
| abstract_inverted_index.that | 14, 45, 120, 129 |
| abstract_inverted_index.this | 102, 153 |
| abstract_inverted_index.well | 244 |
| abstract_inverted_index.work | 151 |
| abstract_inverted_index.alone | 39 |
| abstract_inverted_index.based | 175 |
| abstract_inverted_index.book, | 103 |
| abstract_inverted_index.cover | 171 |
| abstract_inverted_index.e.g., | 78 |
| abstract_inverted_index.first | 166 |
| abstract_inverted_index.later | 96 |
| abstract_inverted_index.other | 137 |
| abstract_inverted_index.using | 193, 239 |
| abstract_inverted_index.usual | 123 |
| abstract_inverted_index.value | 18, 38, 86, 125 |
| abstract_inverted_index.where | 112, 138, 156, 200 |
| abstract_inverted_index.while | 127 |
| abstract_inverted_index.chance | 84, 181 |
| abstract_inverted_index.either | 61 |
| abstract_inverted_index.flavor | 229 |
| abstract_inverted_index.future | 249 |
| abstract_inverted_index.metric | 22 |
| abstract_inverted_index.notion | 53 |
| abstract_inverted_index.policy | 13, 119, 157, 188, 240 |
| abstract_inverted_index.recent | 150 |
| abstract_inverted_index.search | 159 |
| abstract_inverted_index.survey | 146, 224 |
| abstract_inverted_index.theory | 93 |
| abstract_inverted_index.Various | 69 |
| abstract_inverted_index.average | 31 |
| abstract_inverted_index.measure | 141 |
| abstract_inverted_index.popular | 172 |
| abstract_inverted_index.present | 184 |
| abstract_inverted_index.problem | 8, 59 |
| abstract_inverted_index.setting | 199 |
| abstract_inverted_index.solving | 235 |
| abstract_inverted_index.theory, | 217 |
| abstract_inverted_index.theory. | 100 |
| abstract_inverted_index.utility | 213 |
| abstract_inverted_index.coherent | 219 |
| abstract_inverted_index.consider | 105, 210 |
| abstract_inverted_index.directly | 204 |
| abstract_inverted_index.ensuring | 128 |
| abstract_inverted_index.expected | 17, 37, 124 |
| abstract_inverted_index.gradient | 158, 241 |
| abstract_inverted_index.involved | 233 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.long-run | 30 |
| abstract_inverted_index.measures | 71, 174 |
| abstract_inverted_index.methods, | 242 |
| abstract_inverted_index.problems | 238 |
| abstract_inverted_index.proposed | 74 |
| abstract_inverted_index.prospect | 92, 99, 216 |
| abstract_inverted_index.research | 250 |
| abstract_inverted_index.setting, | 169 |
| abstract_inverted_index.solution | 162 |
| abstract_inverted_index.template | 186 |
| abstract_inverted_index.utility, | 80 |
| abstract_inverted_index.approach. | 163 |
| abstract_inverted_index.desirable | 49 |
| abstract_inverted_index.function, | 208 |
| abstract_inverted_index.measures. | 221 |
| abstract_inverted_index.objective | 1, 64, 126, 207 |
| abstract_inverted_index.optimizes | 15, 121 |
| abstract_inverted_index.outlining | 246 |
| abstract_inverted_index.potential | 248 |
| abstract_inverted_index.practice, | 34 |
| abstract_inverted_index.settings: | 110 |
| abstract_inverted_index.variance, | 81, 177 |
| abstract_inverted_index.Lagrangian | 195 |
| abstract_inverted_index.algorithms | 192 |
| abstract_inverted_index.challenges | 232 |
| abstract_inverted_index.constraint | 132 |
| abstract_inverted_index.cumulative | 27, 98, 215 |
| abstract_inverted_index.discounted | 28 |
| abstract_inverted_index.objective. | 144 |
| abstract_inverted_index.optimizing | 35 |
| abstract_inverted_index.percentile | 82 |
| abstract_inverted_index.satisfied, | 134 |
| abstract_inverted_index.(quantile), | 89 |
| abstract_inverted_index.conditional | 90, 178 |
| abstract_inverted_index.constraint. | 68 |
| abstract_inverted_index.directions. | 251 |
| abstract_inverted_index.exponential | 79, 212 |
| abstract_inverted_index.incorporate | 51 |
| abstract_inverted_index.literature, | 77 |
| abstract_inverted_index.performance | 21 |
| abstract_inverted_index.traditional | 4 |
| abstract_inverted_index.constraints, | 85, 182 |
| abstract_inverted_index.cost/reward. | 32 |
| abstract_inverted_index.enhancement, | 97 |
| abstract_inverted_index.formulation, | 60, 214 |
| abstract_inverted_index.formulation. | 196 |
| abstract_inverted_index.incorporated | 203 |
| abstract_inverted_index.optimization | 58 |
| abstract_inverted_index.performance, | 83 |
| abstract_inverted_index.specifically | 155 |
| abstract_inverted_index.reinforcement | 5 |
| abstract_inverted_index.satisfactory, | 43 |
| abstract_inverted_index.gradient-based | 189 |
| abstract_inverted_index.non-exhaustive | 223 |
| abstract_inverted_index.risk-sensitive | 106, 167, 190, 236 |
| abstract_inverted_index.value-at-risk, | 91, 179 |
| abstract_inverted_index.infinite-horizon | 26 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |