RLDBF: Enhancing LLMs Via Reinforcement Learning With DataBase FeedBack Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.03713
While current large language models (LLMs) demonstrate remarkable linguistic capabilities through training on massive unstructured text corpora, they remain inadequate in leveraging structured scientific data (e.g., chemical molecular properties in databases) that encapsulate centuries of accumulated scientific expertise. These structured datasets hold strategic significance for advancing AI for Science yet current approaches merely treat them as auxiliary supplements to unstructured text. This study pioneers a systematic investigation into enhancing LLMs with structured scientific data, using chemical molecular science as a testbed. We investigate the impact of incorporating molecular property data on LLM across distinct training phases, including continual pre-training, supervised fine-tuning, and reinforcement learning. Notably, to address the inherent limitation of numerical insensitivity in large models, we propose an innovative methodology termed "Reinforcement Learning with Database Feedback" (RLDBF). Experimental evaluations demonstrate the efficacy of the proposed approach, with the model exhibiting remarkable generalization capabilities on previously unseen data and other chemical tasks. The results substantiate the potential of our method in advancing the field of structured scientific data processing within LLMs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.03713
- https://arxiv.org/pdf/2504.03713
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416123725
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416123725Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.03713Digital Object Identifier
- Title
-
RLDBF: Enhancing LLMs Via Reinforcement Learning With DataBase FeedBackWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-28Full publication date if available
- Authors
-
Weichen Dai, Ying Pan, X Li, Xi Li, Yi Zhou, Jiang WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.03713Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.03713Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.03713Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416123725 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.03713 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.03713 |
| ids.openalex | https://openalex.org/W4416123725 |
| fwci | |
| type | preprint |
| title | RLDBF: Enhancing LLMs Via Reinforcement Learning With DataBase FeedBack |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.03713 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.03713 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.03713 |
| locations[1].id | doi:10.48550/arxiv.2504.03713 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.03713 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5042276536 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5019-2755 |
| authorships[0].author.display_name | Weichen Dai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dai, Weichen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060891066 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8203-3943 |
| authorships[1].author.display_name | Ying Pan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pan, Yixuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009258949 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6709-0723 |
| authorships[2].author.display_name | X Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Xinhe |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100407749 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-7871-5401 |
| authorships[3].author.display_name | Xi Li |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Li, Xi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037840405 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4774-2234 |
| authorships[4].author.display_name | Yi Zhou |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhou, Yi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5065134331 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4628-7660 |
| authorships[5].author.display_name | Jiang Wu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiang, Wu |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.03713 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RLDBF: Enhancing LLMs Via Reinforcement Learning With DataBase FeedBack |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T05:42:52.777296 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.03713 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.03713 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.03713 |
| primary_location.id | pmh:oai:arXiv.org:2504.03713 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.03713 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.03713 |
| publication_date | 2025-03-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 79 |
| abstract_inverted_index.AI | 46 |
| abstract_inverted_index.We | 81 |
| abstract_inverted_index.an | 118 |
| abstract_inverted_index.as | 55, 78 |
| abstract_inverted_index.in | 20, 29, 113, 160 |
| abstract_inverted_index.of | 34, 85, 110, 133, 157, 164 |
| abstract_inverted_index.on | 12, 90, 144 |
| abstract_inverted_index.to | 58, 105 |
| abstract_inverted_index.we | 116 |
| abstract_inverted_index.LLM | 91 |
| abstract_inverted_index.The | 152 |
| abstract_inverted_index.and | 101, 148 |
| abstract_inverted_index.for | 44, 47 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.the | 83, 107, 131, 134, 138, 155, 162 |
| abstract_inverted_index.yet | 49 |
| abstract_inverted_index.LLMs | 69 |
| abstract_inverted_index.This | 61 |
| abstract_inverted_index.data | 24, 89, 147, 167 |
| abstract_inverted_index.hold | 41 |
| abstract_inverted_index.into | 67 |
| abstract_inverted_index.text | 15 |
| abstract_inverted_index.that | 31 |
| abstract_inverted_index.them | 54 |
| abstract_inverted_index.they | 17 |
| abstract_inverted_index.with | 70, 124, 137 |
| abstract_inverted_index.LLMs. | 170 |
| abstract_inverted_index.These | 38 |
| abstract_inverted_index.While | 0 |
| abstract_inverted_index.data, | 73 |
| abstract_inverted_index.field | 163 |
| abstract_inverted_index.large | 2, 114 |
| abstract_inverted_index.model | 139 |
| abstract_inverted_index.other | 149 |
| abstract_inverted_index.study | 62 |
| abstract_inverted_index.text. | 60 |
| abstract_inverted_index.treat | 53 |
| abstract_inverted_index.using | 74 |
| abstract_inverted_index.(LLMs) | 5 |
| abstract_inverted_index.(e.g., | 25 |
| abstract_inverted_index.across | 92 |
| abstract_inverted_index.impact | 84 |
| abstract_inverted_index.merely | 52 |
| abstract_inverted_index.method | 159 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.remain | 18 |
| abstract_inverted_index.tasks. | 151 |
| abstract_inverted_index.termed | 121 |
| abstract_inverted_index.unseen | 146 |
| abstract_inverted_index.within | 169 |
| abstract_inverted_index.Science | 48 |
| abstract_inverted_index.address | 106 |
| abstract_inverted_index.current | 1, 50 |
| abstract_inverted_index.massive | 13 |
| abstract_inverted_index.models, | 115 |
| abstract_inverted_index.phases, | 95 |
| abstract_inverted_index.propose | 117 |
| abstract_inverted_index.results | 153 |
| abstract_inverted_index.science | 77 |
| abstract_inverted_index.through | 10 |
| abstract_inverted_index.(RLDBF). | 127 |
| abstract_inverted_index.Database | 125 |
| abstract_inverted_index.Learning | 123 |
| abstract_inverted_index.Notably, | 104 |
| abstract_inverted_index.chemical | 26, 75, 150 |
| abstract_inverted_index.corpora, | 16 |
| abstract_inverted_index.datasets | 40 |
| abstract_inverted_index.distinct | 93 |
| abstract_inverted_index.efficacy | 132 |
| abstract_inverted_index.inherent | 108 |
| abstract_inverted_index.language | 3 |
| abstract_inverted_index.pioneers | 63 |
| abstract_inverted_index.property | 88 |
| abstract_inverted_index.proposed | 135 |
| abstract_inverted_index.testbed. | 80 |
| abstract_inverted_index.training | 11, 94 |
| abstract_inverted_index.Feedback" | 126 |
| abstract_inverted_index.advancing | 45, 161 |
| abstract_inverted_index.approach, | 136 |
| abstract_inverted_index.auxiliary | 56 |
| abstract_inverted_index.centuries | 33 |
| abstract_inverted_index.continual | 97 |
| abstract_inverted_index.enhancing | 68 |
| abstract_inverted_index.including | 96 |
| abstract_inverted_index.learning. | 103 |
| abstract_inverted_index.molecular | 27, 76, 87 |
| abstract_inverted_index.numerical | 111 |
| abstract_inverted_index.potential | 156 |
| abstract_inverted_index.strategic | 42 |
| abstract_inverted_index.approaches | 51 |
| abstract_inverted_index.databases) | 30 |
| abstract_inverted_index.exhibiting | 140 |
| abstract_inverted_index.expertise. | 37 |
| abstract_inverted_index.inadequate | 19 |
| abstract_inverted_index.innovative | 119 |
| abstract_inverted_index.leveraging | 21 |
| abstract_inverted_index.limitation | 109 |
| abstract_inverted_index.linguistic | 8 |
| abstract_inverted_index.previously | 145 |
| abstract_inverted_index.processing | 168 |
| abstract_inverted_index.properties | 28 |
| abstract_inverted_index.remarkable | 7, 141 |
| abstract_inverted_index.scientific | 23, 36, 72, 166 |
| abstract_inverted_index.structured | 22, 39, 71, 165 |
| abstract_inverted_index.supervised | 99 |
| abstract_inverted_index.systematic | 65 |
| abstract_inverted_index.accumulated | 35 |
| abstract_inverted_index.demonstrate | 6, 130 |
| abstract_inverted_index.encapsulate | 32 |
| abstract_inverted_index.evaluations | 129 |
| abstract_inverted_index.investigate | 82 |
| abstract_inverted_index.methodology | 120 |
| abstract_inverted_index.supplements | 57 |
| abstract_inverted_index.Experimental | 128 |
| abstract_inverted_index.capabilities | 9, 143 |
| abstract_inverted_index.fine-tuning, | 100 |
| abstract_inverted_index.significance | 43 |
| abstract_inverted_index.substantiate | 154 |
| abstract_inverted_index.unstructured | 14, 59 |
| abstract_inverted_index.incorporating | 86 |
| abstract_inverted_index.insensitivity | 112 |
| abstract_inverted_index.investigation | 66 |
| abstract_inverted_index.pre-training, | 98 |
| abstract_inverted_index.reinforcement | 102 |
| abstract_inverted_index."Reinforcement | 122 |
| abstract_inverted_index.generalization | 142 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |