Road Network and Travel Time Extraction from Multiple Look Angles with Spacenet Data Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/igarss39084.2020.9324091
Identification of road networks and optimal routes directly from remote\nsensing is of critical importance to a broad array of humanitarian and\ncommercial applications. Yet while identification of road pixels has been\nattempted before, estimation of route travel times from overhead imagery\nremains a novel problem, particularly for off-nadir overhead imagery. To this\nend, we extract road networks with travel time estimates from the SpaceNet MVOI\ndataset. Utilizing the CRESIv2 framework, we demonstrate the ability to extract\nroad networks in various observation angles and quantify performance at 27\nunique nadir angles with the graph-theoretic APLS_length and APLS_time metrics.\nA minimal gap of 0.03 between APLS_length and APLS_time scores indicates that\nour approach yields speed limits and travel times with very high fidelity. We\nalso explore the utility of incorporating all available angles during model\ntraining, and find a peak score of APLS_time = 0.56. The combined model\nexhibits greatly improved robustness over angle-specific models, despite the\nvery different appearance of road networks at extremely oblique off-nadir\nangles versus images captured from directly overhead.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/igarss39084.2020.9324091
- OA Status
- green
- Cited By
- 11
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3000492309
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3000492309Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/igarss39084.2020.9324091Digital Object Identifier
- Title
-
Road Network and Travel Time Extraction from Multiple Look Angles with Spacenet DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-26Full publication date if available
- Authors
-
Adam Van Etten, Jacob Shermeyer, David B. Hogan, N. Weir, Ryan LewisList of authors in order
- Landing page
-
https://doi.org/10.1109/igarss39084.2020.9324091Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2001.05923Direct OA link when available
- Concepts
-
Nadir, Robustness (evolution), Computer science, Overhead (engineering), Fidelity, Pixel, Travel time, Identification (biology), Oblique case, Artificial intelligence, Graph, Azimuth, Real-time computing, Computer vision, Remote sensing, Mathematics, Geography, Transport engineering, Telecommunications, Engineering, Gene, Biology, Botany, Theoretical computer science, Operating system, Biochemistry, Philosophy, Linguistics, Aerospace engineering, Chemistry, Satellite, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 2, 2022: 3, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3000492309 |
|---|---|
| doi | https://doi.org/10.1109/igarss39084.2020.9324091 |
| ids.doi | https://doi.org/10.1109/igarss39084.2020.9324091 |
| ids.mag | 3000492309 |
| ids.openalex | https://openalex.org/W3000492309 |
| fwci | 1.60584251 |
| type | article |
| title | Road Network and Travel Time Extraction from Multiple Look Angles with Spacenet Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 3923 |
| biblio.first_page | 3920 |
| topics[0].id | https://openalex.org/T13282 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Automated Road and Building Extraction |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9776999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C88575799 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6986740827560425 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q145825 |
| concepts[0].display_name | Nadir |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6974000334739685 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.652300238609314 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779960059 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5607455372810364 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[3].display_name | Overhead (engineering) |
| concepts[4].id | https://openalex.org/C2776459999 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5321492552757263 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[4].display_name | Fidelity |
| concepts[5].id | https://openalex.org/C160633673 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49049872159957886 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[5].display_name | Pixel |
| concepts[6].id | https://openalex.org/C2985733770 |
| concepts[6].level | 2 |
| concepts[6].score | 0.474680632352829 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1233007 |
| concepts[6].display_name | Travel time |
| concepts[7].id | https://openalex.org/C116834253 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4744889736175537 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[7].display_name | Identification (biology) |
| concepts[8].id | https://openalex.org/C160697094 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45040589570999146 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1233197 |
| concepts[8].display_name | Oblique case |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.43635720014572144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C132525143 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42063260078430176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[10].display_name | Graph |
| concepts[11].id | https://openalex.org/C159737794 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41935649514198303 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q124274 |
| concepts[11].display_name | Azimuth |
| concepts[12].id | https://openalex.org/C79403827 |
| concepts[12].level | 1 |
| concepts[12].score | 0.40064677596092224 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[12].display_name | Real-time computing |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4004608392715454 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C62649853 |
| concepts[14].level | 1 |
| concepts[14].score | 0.36704427003860474 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[14].display_name | Remote sensing |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.19365066289901733 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.18407398462295532 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C22212356 |
| concepts[17].level | 1 |
| concepts[17].score | 0.15802380442619324 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[17].display_name | Transport engineering |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.13418138027191162 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.12412098050117493 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C104317684 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[20].display_name | Gene |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C59822182 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[22].display_name | Botany |
| concepts[23].id | https://openalex.org/C80444323 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[23].display_name | Theoretical computer science |
| concepts[24].id | https://openalex.org/C111919701 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[24].display_name | Operating system |
| concepts[25].id | https://openalex.org/C55493867 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[25].display_name | Biochemistry |
| concepts[26].id | https://openalex.org/C138885662 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[26].display_name | Philosophy |
| concepts[27].id | https://openalex.org/C41895202 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[27].display_name | Linguistics |
| concepts[28].id | https://openalex.org/C146978453 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[28].display_name | Aerospace engineering |
| concepts[29].id | https://openalex.org/C185592680 |
| concepts[29].level | 0 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[29].display_name | Chemistry |
| concepts[30].id | https://openalex.org/C19269812 |
| concepts[30].level | 2 |
| concepts[30].score | 0.0 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[30].display_name | Satellite |
| concepts[31].id | https://openalex.org/C2524010 |
| concepts[31].level | 1 |
| concepts[31].score | 0.0 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[31].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/nadir |
| keywords[0].score | 0.6986740827560425 |
| keywords[0].display_name | Nadir |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.6974000334739685 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.652300238609314 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/overhead |
| keywords[3].score | 0.5607455372810364 |
| keywords[3].display_name | Overhead (engineering) |
| keywords[4].id | https://openalex.org/keywords/fidelity |
| keywords[4].score | 0.5321492552757263 |
| keywords[4].display_name | Fidelity |
| keywords[5].id | https://openalex.org/keywords/pixel |
| keywords[5].score | 0.49049872159957886 |
| keywords[5].display_name | Pixel |
| keywords[6].id | https://openalex.org/keywords/travel-time |
| keywords[6].score | 0.474680632352829 |
| keywords[6].display_name | Travel time |
| keywords[7].id | https://openalex.org/keywords/identification |
| keywords[7].score | 0.4744889736175537 |
| keywords[7].display_name | Identification (biology) |
| keywords[8].id | https://openalex.org/keywords/oblique-case |
| keywords[8].score | 0.45040589570999146 |
| keywords[8].display_name | Oblique case |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.43635720014572144 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/graph |
| keywords[10].score | 0.42063260078430176 |
| keywords[10].display_name | Graph |
| keywords[11].id | https://openalex.org/keywords/azimuth |
| keywords[11].score | 0.41935649514198303 |
| keywords[11].display_name | Azimuth |
| keywords[12].id | https://openalex.org/keywords/real-time-computing |
| keywords[12].score | 0.40064677596092224 |
| keywords[12].display_name | Real-time computing |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.4004608392715454 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/remote-sensing |
| keywords[14].score | 0.36704427003860474 |
| keywords[14].display_name | Remote sensing |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.19365066289901733 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.18407398462295532 |
| keywords[16].display_name | Geography |
| keywords[17].id | https://openalex.org/keywords/transport-engineering |
| keywords[17].score | 0.15802380442619324 |
| keywords[17].display_name | Transport engineering |
| keywords[18].id | https://openalex.org/keywords/telecommunications |
| keywords[18].score | 0.13418138027191162 |
| keywords[18].display_name | Telecommunications |
| keywords[19].id | https://openalex.org/keywords/engineering |
| keywords[19].score | 0.12412098050117493 |
| keywords[19].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/igarss39084.2020.9324091 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium |
| locations[0].landing_page_url | https://doi.org/10.1109/igarss39084.2020.9324091 |
| locations[1].id | pmh:oai:arXiv.org:2001.05923 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2001.05923 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2001.05923 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5054424167 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Adam Van Etten |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38260057 |
| authorships[0].affiliations[0].raw_affiliation_string | n-Q-Tel CosmiQ Works |
| authorships[0].institutions[0].id | https://openalex.org/I38260057 |
| authorships[0].institutions[0].ror | https://ror.org/02qp5k481 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I38260057 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | In-Q-Tel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adam Van Etten |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | n-Q-Tel CosmiQ Works |
| authorships[1].author.id | https://openalex.org/A5055936854 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8143-2790 |
| authorships[1].author.display_name | Jacob Shermeyer |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38260057 |
| authorships[1].affiliations[0].raw_affiliation_string | n-Q-Tel CosmiQ Works |
| authorships[1].institutions[0].id | https://openalex.org/I38260057 |
| authorships[1].institutions[0].ror | https://ror.org/02qp5k481 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I38260057 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | In-Q-Tel |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jacob Shermeyer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | n-Q-Tel CosmiQ Works |
| authorships[2].author.id | https://openalex.org/A5086426526 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9462-5460 |
| authorships[2].author.display_name | David B. Hogan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I38260057 |
| authorships[2].affiliations[0].raw_affiliation_string | n-Q-Tel CosmiQ Works |
| authorships[2].institutions[0].id | https://openalex.org/I38260057 |
| authorships[2].institutions[0].ror | https://ror.org/02qp5k481 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I38260057 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | In-Q-Tel |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daniel Hogan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | n-Q-Tel CosmiQ Works |
| authorships[3].author.id | https://openalex.org/A5021240747 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1797-849X |
| authorships[3].author.display_name | N. Weir |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I38260057 |
| authorships[3].affiliations[0].raw_affiliation_string | n-Q-Tel CosmiQ Works |
| authorships[3].institutions[0].id | https://openalex.org/I38260057 |
| authorships[3].institutions[0].ror | https://ror.org/02qp5k481 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I38260057 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | In-Q-Tel |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nicholas Weir |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | n-Q-Tel CosmiQ Works |
| authorships[4].author.id | https://openalex.org/A5024225066 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ryan Lewis |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I38260057 |
| authorships[4].affiliations[0].raw_affiliation_string | n-Q-Tel CosmiQ Works |
| authorships[4].institutions[0].id | https://openalex.org/I38260057 |
| authorships[4].institutions[0].ror | https://ror.org/02qp5k481 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I38260057 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | In-Q-Tel |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ryan Lewis |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | n-Q-Tel CosmiQ Works |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2001.05923 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-01-23T00:00:00 |
| display_name | Road Network and Travel Time Extraction from Multiple Look Angles with Spacenet Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13282 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Automated Road and Building Extraction |
| related_works | https://openalex.org/W1936443018, https://openalex.org/W3114051225, https://openalex.org/W2495312616, https://openalex.org/W2053295005, https://openalex.org/W2043483232, https://openalex.org/W2052056785, https://openalex.org/W2989793328, https://openalex.org/W2979979995, https://openalex.org/W1524657574, https://openalex.org/W2018347628 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2001.05923 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2001.05923 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2001.05923 |
| primary_location.id | doi:10.1109/igarss39084.2020.9324091 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium |
| primary_location.landing_page_url | https://doi.org/10.1109/igarss39084.2020.9324091 |
| publication_date | 2020-09-26 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2194775991, https://openalex.org/W1901129140, https://openalex.org/W2764034829, https://openalex.org/W2790979755, https://openalex.org/W2340897893, https://openalex.org/W2929499422, https://openalex.org/W2782522152, https://openalex.org/W2953139137, https://openalex.org/W2811199523, https://openalex.org/W2981662367, https://openalex.org/W2969786836, https://openalex.org/W2253156915, https://openalex.org/W2904704381, https://openalex.org/W2905543287, https://openalex.org/W4295550965 |
| referenced_works_count | 15 |
| abstract_inverted_index.= | 130 |
| abstract_inverted_index.a | 15, 39, 125 |
| abstract_inverted_index.To | 47 |
| abstract_inverted_index.at | 79, 148 |
| abstract_inverted_index.in | 72 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 1, 11, 18, 25, 32, 92, 116, 128, 145 |
| abstract_inverted_index.to | 14, 69 |
| abstract_inverted_index.we | 49, 65 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.Yet | 22 |
| abstract_inverted_index.all | 118 |
| abstract_inverted_index.and | 4, 76, 87, 96, 105, 123 |
| abstract_inverted_index.for | 43 |
| abstract_inverted_index.gap | 91 |
| abstract_inverted_index.has | 28 |
| abstract_inverted_index.the | 58, 62, 67, 84, 114 |
| abstract_inverted_index.0.03 | 93 |
| abstract_inverted_index.find | 124 |
| abstract_inverted_index.from | 8, 36, 57, 155 |
| abstract_inverted_index.high | 110 |
| abstract_inverted_index.over | 138 |
| abstract_inverted_index.peak | 126 |
| abstract_inverted_index.road | 2, 26, 51, 146 |
| abstract_inverted_index.time | 55 |
| abstract_inverted_index.very | 109 |
| abstract_inverted_index.with | 53, 83, 108 |
| abstract_inverted_index.0.56. | 131 |
| abstract_inverted_index.array | 17 |
| abstract_inverted_index.broad | 16 |
| abstract_inverted_index.nadir | 81 |
| abstract_inverted_index.novel | 40 |
| abstract_inverted_index.route | 33 |
| abstract_inverted_index.score | 127 |
| abstract_inverted_index.speed | 103 |
| abstract_inverted_index.times | 35, 107 |
| abstract_inverted_index.while | 23 |
| abstract_inverted_index.angles | 75, 82, 120 |
| abstract_inverted_index.during | 121 |
| abstract_inverted_index.images | 153 |
| abstract_inverted_index.limits | 104 |
| abstract_inverted_index.pixels | 27 |
| abstract_inverted_index.routes | 6 |
| abstract_inverted_index.scores | 98 |
| abstract_inverted_index.travel | 34, 54, 106 |
| abstract_inverted_index.versus | 152 |
| abstract_inverted_index.yields | 102 |
| abstract_inverted_index.CRESIv2 | 63 |
| abstract_inverted_index.ability | 68 |
| abstract_inverted_index.before, | 30 |
| abstract_inverted_index.between | 94 |
| abstract_inverted_index.despite | 141 |
| abstract_inverted_index.explore | 113 |
| abstract_inverted_index.extract | 50 |
| abstract_inverted_index.greatly | 135 |
| abstract_inverted_index.minimal | 90 |
| abstract_inverted_index.models, | 140 |
| abstract_inverted_index.oblique | 150 |
| abstract_inverted_index.optimal | 5 |
| abstract_inverted_index.utility | 115 |
| abstract_inverted_index.various | 73 |
| abstract_inverted_index.SpaceNet | 59 |
| abstract_inverted_index.We\nalso | 112 |
| abstract_inverted_index.approach | 101 |
| abstract_inverted_index.captured | 154 |
| abstract_inverted_index.combined | 133 |
| abstract_inverted_index.critical | 12 |
| abstract_inverted_index.directly | 7, 156 |
| abstract_inverted_index.imagery. | 46 |
| abstract_inverted_index.improved | 136 |
| abstract_inverted_index.networks | 3, 52, 71, 147 |
| abstract_inverted_index.overhead | 37, 45 |
| abstract_inverted_index.problem, | 41 |
| abstract_inverted_index.quantify | 77 |
| abstract_inverted_index.APLS_time | 88, 97, 129 |
| abstract_inverted_index.Utilizing | 61 |
| abstract_inverted_index.available | 119 |
| abstract_inverted_index.different | 143 |
| abstract_inverted_index.estimates | 56 |
| abstract_inverted_index.extremely | 149 |
| abstract_inverted_index.fidelity. | 111 |
| abstract_inverted_index.indicates | 99 |
| abstract_inverted_index.off-nadir | 44 |
| abstract_inverted_index.that\nour | 100 |
| abstract_inverted_index.the\nvery | 142 |
| abstract_inverted_index.27\nunique | 80 |
| abstract_inverted_index.appearance | 144 |
| abstract_inverted_index.estimation | 31 |
| abstract_inverted_index.framework, | 64 |
| abstract_inverted_index.importance | 13 |
| abstract_inverted_index.robustness | 137 |
| abstract_inverted_index.this\nend, | 48 |
| abstract_inverted_index.APLS_length | 86, 95 |
| abstract_inverted_index.demonstrate | 66 |
| abstract_inverted_index.metrics.\nA | 89 |
| abstract_inverted_index.observation | 74 |
| abstract_inverted_index.overhead.\n | 157 |
| abstract_inverted_index.performance | 78 |
| abstract_inverted_index.humanitarian | 19 |
| abstract_inverted_index.particularly | 42 |
| abstract_inverted_index.applications. | 21 |
| abstract_inverted_index.extract\nroad | 70 |
| abstract_inverted_index.incorporating | 117 |
| abstract_inverted_index.Identification | 0 |
| abstract_inverted_index.MVOI\ndataset. | 60 |
| abstract_inverted_index.angle-specific | 139 |
| abstract_inverted_index.identification | 24 |
| abstract_inverted_index.and\ncommercial | 20 |
| abstract_inverted_index.been\nattempted | 29 |
| abstract_inverted_index.graph-theoretic | 85 |
| abstract_inverted_index.model\nexhibits | 134 |
| abstract_inverted_index.remote\nsensing | 9 |
| abstract_inverted_index.imagery\nremains | 38 |
| abstract_inverted_index.model\ntraining, | 122 |
| abstract_inverted_index.off-nadir\nangles | 151 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.81094753 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |