RoBCtrl: Attacking GNN-Based Social Bot Detectors via Reinforced Manipulation of Bots Control Interaction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.16035
Social networks have become a crucial source of real-time information for individuals. The influence of social bots within these platforms has garnered considerable attention from researchers, leading to the development of numerous detection technologies. However, the vulnerability and robustness of these detection methods is still underexplored. Existing Graph Neural Network (GNN)-based methods cannot be directly applied due to the issues of limited control over social agents, the black-box nature of bot detectors, and the heterogeneity of bots. To address these challenges, this paper proposes the first adversarial multi-agent Reinforcement learning framework for social Bot control attacks (RoBCtrl) targeting GNN-based social bot detectors. Specifically, we use a diffusion model to generate high-fidelity bot accounts by reconstructing existing account data with minor modifications, thereby evading detection on social platforms. To the best of our knowledge, this is the first application of diffusion models to mimic the behavior of evolving social bots effectively. We then employ a Multi-Agent Reinforcement Learning (MARL) method to simulate bots adversarial behavior. We categorize social accounts based on their influence and budget. Different agents are then employed to control bot accounts across various categories, optimizing the attachment strategy through reinforcement learning. Additionally, a hierarchical state abstraction based on structural entropy is designed to accelerate the reinforcement learning. Extensive experiments on social bot detection datasets demonstrate that our framework can effectively undermine the performance of GNN-based detectors.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.16035
- https://arxiv.org/pdf/2510.16035
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415948645
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415948645Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.16035Digital Object Identifier
- Title
-
RoBCtrl: Attacking GNN-Based Social Bot Detectors via Reinforced Manipulation of Bots Control InteractionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-16Full publication date if available
- Authors
-
Yingguang Yang, Xianghua Zeng, Q. M. Jonathan Wu, Hao Peng, Yutong Xia, Hao Liu, Bin Chong, Philip S. YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.16035Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.16035Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.16035Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415948645 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.16035 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.16035 |
| ids.openalex | https://openalex.org/W4415948645 |
| fwci | |
| type | preprint |
| title | RoBCtrl: Attacking GNN-Based Social Bot Detectors via Reinforced Manipulation of Bots Control Interaction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.16035 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.16035 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.16035 |
| locations[1].id | doi:10.48550/arxiv.2510.16035 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.16035 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009335523 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2473-6229 |
| authorships[0].author.display_name | Yingguang Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Yingguang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5034025309 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4775-6764 |
| authorships[1].author.display_name | Xianghua Zeng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zeng, Xianghua |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100731724 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5208-7975 |
| authorships[2].author.display_name | Q. M. Jonathan Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Qi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010659223 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9522-3148 |
| authorships[3].author.display_name | Hao Peng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peng, Hao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037095547 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yutong Xia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xia, Yutong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100458752 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7339-3763 |
| authorships[5].author.display_name | Hao Liu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liu, Hao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5043041253 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8741-178X |
| authorships[6].author.display_name | Bin Chong |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chong, Bin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5036357902 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3491-5968 |
| authorships[7].author.display_name | Philip S. Yu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yu, Philip S. |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.16035 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-22T00:00:00 |
| display_name | RoBCtrl: Attacking GNN-Based Social Bot Detectors via Reinforced Manipulation of Bots Control Interaction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-07T23:20:04.922697 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.16035 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.16035 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.16035 |
| primary_location.id | pmh:oai:arXiv.org:2510.16035 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.16035 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.16035 |
| publication_date | 2025-10-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 105, 153, 194 |
| abstract_inverted_index.To | 77, 127 |
| abstract_inverted_index.We | 150, 164 |
| abstract_inverted_index.be | 53 |
| abstract_inverted_index.by | 113 |
| abstract_inverted_index.is | 43, 134, 202 |
| abstract_inverted_index.of | 7, 14, 30, 39, 60, 69, 75, 130, 138, 145, 225 |
| abstract_inverted_index.on | 124, 169, 199, 211 |
| abstract_inverted_index.to | 27, 57, 108, 141, 159, 179, 204 |
| abstract_inverted_index.we | 103 |
| abstract_inverted_index.Bot | 93 |
| abstract_inverted_index.The | 12 |
| abstract_inverted_index.and | 37, 72, 172 |
| abstract_inverted_index.are | 176 |
| abstract_inverted_index.bot | 70, 100, 111, 181, 213 |
| abstract_inverted_index.can | 220 |
| abstract_inverted_index.due | 56 |
| abstract_inverted_index.for | 10, 91 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.our | 131, 218 |
| abstract_inverted_index.the | 28, 35, 58, 66, 73, 84, 128, 135, 143, 187, 206, 223 |
| abstract_inverted_index.use | 104 |
| abstract_inverted_index.best | 129 |
| abstract_inverted_index.bots | 16, 148, 161 |
| abstract_inverted_index.data | 117 |
| abstract_inverted_index.from | 24 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.over | 63 |
| abstract_inverted_index.that | 217 |
| abstract_inverted_index.then | 151, 177 |
| abstract_inverted_index.this | 81, 133 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.Graph | 47 |
| abstract_inverted_index.based | 168, 198 |
| abstract_inverted_index.bots. | 76 |
| abstract_inverted_index.first | 85, 136 |
| abstract_inverted_index.mimic | 142 |
| abstract_inverted_index.minor | 119 |
| abstract_inverted_index.model | 107 |
| abstract_inverted_index.paper | 82 |
| abstract_inverted_index.state | 196 |
| abstract_inverted_index.still | 44 |
| abstract_inverted_index.their | 170 |
| abstract_inverted_index.these | 18, 40, 79 |
| abstract_inverted_index.(MARL) | 157 |
| abstract_inverted_index.Neural | 48 |
| abstract_inverted_index.Social | 0 |
| abstract_inverted_index.across | 183 |
| abstract_inverted_index.agents | 175 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.cannot | 52 |
| abstract_inverted_index.employ | 152 |
| abstract_inverted_index.issues | 59 |
| abstract_inverted_index.method | 158 |
| abstract_inverted_index.models | 140 |
| abstract_inverted_index.nature | 68 |
| abstract_inverted_index.social | 15, 64, 92, 99, 125, 147, 166, 212 |
| abstract_inverted_index.source | 6 |
| abstract_inverted_index.within | 17 |
| abstract_inverted_index.Network | 49 |
| abstract_inverted_index.account | 116 |
| abstract_inverted_index.address | 78 |
| abstract_inverted_index.agents, | 65 |
| abstract_inverted_index.applied | 55 |
| abstract_inverted_index.attacks | 95 |
| abstract_inverted_index.budget. | 173 |
| abstract_inverted_index.control | 62, 94, 180 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.entropy | 201 |
| abstract_inverted_index.evading | 122 |
| abstract_inverted_index.leading | 26 |
| abstract_inverted_index.limited | 61 |
| abstract_inverted_index.methods | 42, 51 |
| abstract_inverted_index.thereby | 121 |
| abstract_inverted_index.through | 190 |
| abstract_inverted_index.various | 184 |
| abstract_inverted_index.Existing | 46 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.Learning | 156 |
| abstract_inverted_index.accounts | 112, 167, 182 |
| abstract_inverted_index.behavior | 144 |
| abstract_inverted_index.datasets | 215 |
| abstract_inverted_index.designed | 203 |
| abstract_inverted_index.directly | 54 |
| abstract_inverted_index.employed | 178 |
| abstract_inverted_index.evolving | 146 |
| abstract_inverted_index.existing | 115 |
| abstract_inverted_index.garnered | 21 |
| abstract_inverted_index.generate | 109 |
| abstract_inverted_index.learning | 89 |
| abstract_inverted_index.networks | 1 |
| abstract_inverted_index.numerous | 31 |
| abstract_inverted_index.proposes | 83 |
| abstract_inverted_index.simulate | 160 |
| abstract_inverted_index.strategy | 189 |
| abstract_inverted_index.(RoBCtrl) | 96 |
| abstract_inverted_index.Different | 174 |
| abstract_inverted_index.Extensive | 209 |
| abstract_inverted_index.GNN-based | 98, 226 |
| abstract_inverted_index.attention | 23 |
| abstract_inverted_index.behavior. | 163 |
| abstract_inverted_index.black-box | 67 |
| abstract_inverted_index.detection | 32, 41, 123, 214 |
| abstract_inverted_index.diffusion | 106, 139 |
| abstract_inverted_index.framework | 90, 219 |
| abstract_inverted_index.influence | 13, 171 |
| abstract_inverted_index.learning. | 192, 208 |
| abstract_inverted_index.platforms | 19 |
| abstract_inverted_index.real-time | 8 |
| abstract_inverted_index.targeting | 97 |
| abstract_inverted_index.undermine | 222 |
| abstract_inverted_index.accelerate | 205 |
| abstract_inverted_index.attachment | 188 |
| abstract_inverted_index.categorize | 165 |
| abstract_inverted_index.detectors, | 71 |
| abstract_inverted_index.detectors. | 101, 227 |
| abstract_inverted_index.knowledge, | 132 |
| abstract_inverted_index.optimizing | 186 |
| abstract_inverted_index.platforms. | 126 |
| abstract_inverted_index.robustness | 38 |
| abstract_inverted_index.structural | 200 |
| abstract_inverted_index.(GNN)-based | 50 |
| abstract_inverted_index.Multi-Agent | 154 |
| abstract_inverted_index.abstraction | 197 |
| abstract_inverted_index.adversarial | 86, 162 |
| abstract_inverted_index.application | 137 |
| abstract_inverted_index.categories, | 185 |
| abstract_inverted_index.challenges, | 80 |
| abstract_inverted_index.demonstrate | 216 |
| abstract_inverted_index.development | 29 |
| abstract_inverted_index.effectively | 221 |
| abstract_inverted_index.experiments | 210 |
| abstract_inverted_index.information | 9 |
| abstract_inverted_index.multi-agent | 87 |
| abstract_inverted_index.performance | 224 |
| abstract_inverted_index.considerable | 22 |
| abstract_inverted_index.effectively. | 149 |
| abstract_inverted_index.hierarchical | 195 |
| abstract_inverted_index.individuals. | 11 |
| abstract_inverted_index.researchers, | 25 |
| abstract_inverted_index.Additionally, | 193 |
| abstract_inverted_index.Reinforcement | 88, 155 |
| abstract_inverted_index.Specifically, | 102 |
| abstract_inverted_index.heterogeneity | 74 |
| abstract_inverted_index.high-fidelity | 110 |
| abstract_inverted_index.reinforcement | 191, 207 |
| abstract_inverted_index.technologies. | 33 |
| abstract_inverted_index.vulnerability | 36 |
| abstract_inverted_index.modifications, | 120 |
| abstract_inverted_index.reconstructing | 114 |
| abstract_inverted_index.underexplored. | 45 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |