Robotic Skill Acquisition in Peg-in-hole Assembly Tasks Based on Deep Reinforcement Learning Article Swipe
Peng Tu
,
Zihao Sun
,
Yuxuan Gao
,
Pingping Liu
,
Rui Song
,
Yong Sang Song
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2024.11.038
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2024.11.038
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2024.11.038
- OA Status
- diamond
- Cited By
- 1
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404844838
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404844838Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2024.11.038Digital Object Identifier
- Title
-
Robotic Skill Acquisition in Peg-in-hole Assembly Tasks Based on Deep Reinforcement LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Peng Tu, Zihao Sun, Yuxuan Gao, Pingping Liu, Rui Song, Yong Sang SongList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2024.11.038Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2024.11.038Direct OA link when available
- Concepts
-
Computer science, Reinforcement learning, Dreyfus model of skill acquisition, Artificial intelligence, PEG ratio, Human–computer interaction, Finance, Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404844838 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2024.11.038 |
| ids.doi | https://doi.org/10.1016/j.procs.2024.11.038 |
| ids.openalex | https://openalex.org/W4404844838 |
| fwci | 0.63620868 |
| type | article |
| title | Robotic Skill Acquisition in Peg-in-hole Assembly Tasks Based on Deep Reinforcement Learning |
| biblio.issue | |
| biblio.volume | 250 |
| biblio.last_page | 135 |
| biblio.first_page | 129 |
| topics[0].id | https://openalex.org/T10653 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9957000017166138 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Robot Manipulation and Learning |
| topics[1].id | https://openalex.org/T11159 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Manufacturing Process and Optimization |
| topics[2].id | https://openalex.org/T10551 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9749000072479248 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Scheduling and Optimization Algorithms |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8846355676651001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8142790794372559 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C132758656 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5376663208007812 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5307365 |
| concepts[2].display_name | Dreyfus model of skill acquisition |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5178442597389221 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C54400483 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4597302973270416 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1793202 |
| concepts[4].display_name | PEG ratio |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3886663019657135 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C10138342 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[6].display_name | Finance |
| concepts[7].id | https://openalex.org/C50522688 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[7].display_name | Economic growth |
| concepts[8].id | https://openalex.org/C162324750 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[8].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8846355676651001 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.8142790794372559 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/dreyfus-model-of-skill-acquisition |
| keywords[2].score | 0.5376663208007812 |
| keywords[2].display_name | Dreyfus model of skill acquisition |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5178442597389221 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/peg-ratio |
| keywords[4].score | 0.4597302973270416 |
| keywords[4].display_name | PEG ratio |
| keywords[5].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[5].score | 0.3886663019657135 |
| keywords[5].display_name | Human–computer interaction |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2024.11.038 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2024.11.038 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5053923473 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Peng Tu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Tu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057493831 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6337-1712 |
| authorships[1].author.display_name | Zihao Sun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zihao Sun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102798296 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8510-5818 |
| authorships[2].author.display_name | Yuxuan Gao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuxuan Gao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100666029 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4758-7630 |
| authorships[3].author.display_name | Pingping Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pingping Liu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113852285 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4119-4433 |
| authorships[4].author.display_name | Rui Song |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rui Song |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004406086 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7115-4021 |
| authorships[5].author.display_name | Yong Sang Song |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yong Song |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2024.11.038 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robotic Skill Acquisition in Peg-in-hole Assembly Tasks Based on Deep Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T23:15:26.331081 |
| primary_topic.id | https://openalex.org/T10653 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9957000017166138 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Robot Manipulation and Learning |
| related_works | https://openalex.org/W2064730869, https://openalex.org/W2316170482, https://openalex.org/W2319863398, https://openalex.org/W2021543137, https://openalex.org/W2332336499, https://openalex.org/W2905102299, https://openalex.org/W1559396134, https://openalex.org/W2323943295, https://openalex.org/W2356915299, https://openalex.org/W4306904969 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2024.11.038 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2024.11.038 |
| primary_location.id | doi:10.1016/j.procs.2024.11.038 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2024.11.038 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4280631854, https://openalex.org/W3028308378, https://openalex.org/W4367281338, https://openalex.org/W2913938871, https://openalex.org/W6810225890, https://openalex.org/W4319459184, https://openalex.org/W4320015882, https://openalex.org/W4297964528, https://openalex.org/W4386328598, https://openalex.org/W6684921986, https://openalex.org/W6748839928, https://openalex.org/W6792244340, https://openalex.org/W4385489439, https://openalex.org/W3100172161, https://openalex.org/W3142849873, https://openalex.org/W2963864421 |
| referenced_works_count | 16 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.68098022 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |