Robust Adversarial Example Detection Algorithm Based on High-Level Feature Differences Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25061770
The threat posed by adversarial examples (AEs) to deep learning applications has garnered significant attention from the academic community. In response, various defense strategies have been proposed, including adversarial example detection. A range of detection algorithms has been developed to differentiate between benign samples and adversarial examples. However, the detection accuracy of these algorithms is significantly influenced by the characteristics of the adversarial attacks, such as attack type and intensity. Furthermore, the impact of image preprocessing on detection robustness—a common step before adversarial example generation—has been largely overlooked in prior research. To address these challenges, this paper introduces a novel adversarial example detection algorithm based on high-level feature differences (HFDs), which is specifically designed to improve robustness against both attacks and preprocessing operations. For each test image, a counterpart image with the same predicted label is randomly selected from the training dataset. The high-level features of both images are extracted using an encoder and compared through a similarity measurement model. If the feature similarity is low, the test image is classified as an adversarial example. The proposed method was evaluated for detection accuracy against four comparison methods, showing significant improvements over FS, DF, and MD, with a performance comparable to ESRM. Therefore, the subsequent robustness experiments focused exclusively on ESRM. Our results demonstrate that the proposed method exhibits superior robustness against preprocessing operations, such as downsampling and common corruptions, applied by attackers before generating adversarial examples. It is also applicable to various target models. By exploiting semantic conflicts in high-level features between clean and adversarial examples with the same predicted label, the method achieves high detection accuracy across diverse attack types while maintaining resilience to preprocessing, providing a valuable new perspective in the design of adversarial example detection algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25061770
- https://www.mdpi.com/1424-8220/25/6/1770/pdf?version=1741793910
- OA Status
- gold
- Cited By
- 1
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408415355
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408415355Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25061770Digital Object Identifier
- Title
-
Robust Adversarial Example Detection Algorithm Based on High-Level Feature DifferencesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-12Full publication date if available
- Authors
-
Hua Mu, Chenggang Li, Anjie Peng, Yangyang Wang, Zhenyu LiangList of authors in order
- Landing page
-
https://doi.org/10.3390/s25061770Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/6/1770/pdf?version=1741793910Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/6/1770/pdf?version=1741793910Direct OA link when available
- Concepts
-
Adversarial system, Robustness (evolution), Computer science, Preprocessor, Artificial intelligence, Upsampling, Pattern recognition (psychology), Machine learning, Data mining, Feature extraction, Image (mathematics), Algorithm, Gene, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408415355 |
|---|---|
| doi | https://doi.org/10.3390/s25061770 |
| ids.doi | https://doi.org/10.3390/s25061770 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40292880 |
| ids.openalex | https://openalex.org/W4408415355 |
| fwci | 4.81974515 |
| type | article |
| title | Robust Adversarial Example Detection Algorithm Based on High-Level Feature Differences |
| biblio.issue | 6 |
| biblio.volume | 25 |
| biblio.last_page | 1770 |
| biblio.first_page | 1770 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9659000039100647 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11515 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9539999961853027 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Bacillus and Francisella bacterial research |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8142244815826416 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7758479118347168 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.68585205078125 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C34736171 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6789062023162842 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[3].display_name | Preprocessor |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6468886137008667 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C110384440 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5773701667785645 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1143270 |
| concepts[5].display_name | Upsampling |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4882552921772003 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45850497484207153 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4443672001361847 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C52622490 |
| concepts[9].level | 2 |
| concepts[9].score | 0.415441632270813 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[9].display_name | Feature extraction |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35593360662460327 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3479500412940979 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.8142244815826416 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.7758479118347168 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.68585205078125 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/preprocessor |
| keywords[3].score | 0.6789062023162842 |
| keywords[3].display_name | Preprocessor |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6468886137008667 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/upsampling |
| keywords[5].score | 0.5773701667785645 |
| keywords[5].display_name | Upsampling |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4882552921772003 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.45850497484207153 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4443672001361847 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/feature-extraction |
| keywords[9].score | 0.415441632270813 |
| keywords[9].display_name | Feature extraction |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.35593360662460327 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3479500412940979 |
| keywords[11].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.3390/s25061770 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/6/1770/pdf?version=1741793910 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25061770 |
| locations[1].id | pmid:40292880 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40292880 |
| locations[2].id | pmh:oai:doaj.org/article:93de58f64a194c63a3084797bcfdcf68 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 6, p 1770 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/93de58f64a194c63a3084797bcfdcf68 |
| locations[3].id | pmh:oai:europepmc.org:10758348 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11946526 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101107341 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2710-8850 |
| authorships[0].author.display_name | Hua Mu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China |
| authorships[0].institutions[0].id | https://openalex.org/I170215575 |
| authorships[0].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | National University of Defense Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hua Mu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China |
| authorships[1].author.id | https://openalex.org/A5101727154 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5183-289X |
| authorships[1].author.display_name | Chenggang Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210115919 |
| authorships[1].affiliations[0].raw_affiliation_string | The First People's Hospital of Guangyuan, Guangyuan 628017, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1297991670 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China |
| authorships[1].institutions[0].id | https://openalex.org/I1297991670 |
| authorships[1].institutions[0].ror | https://ror.org/04d996474 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1297991670 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southwest University of Science and Technology |
| authorships[1].institutions[1].id | https://openalex.org/I4210115919 |
| authorships[1].institutions[1].ror | https://ror.org/02aa8kj12 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210115919 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | The People's Hospital of Guangxi Zhuang Autonomous Region |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chenggang Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China, The First People's Hospital of Guangyuan, Guangyuan 628017, China |
| authorships[2].author.id | https://openalex.org/A5014092332 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9287-7536 |
| authorships[2].author.display_name | Anjie Peng |
| authorships[2].affiliations[0].raw_affiliation_string | Jianghuai Advanced Technology Center, Jianghuai 230031, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anjie Peng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Jianghuai Advanced Technology Center, Jianghuai 230031, China |
| authorships[3].author.id | https://openalex.org/A5100345147 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-7581-9897 |
| authorships[3].author.display_name | Yangyang Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China |
| authorships[3].institutions[0].id | https://openalex.org/I170215575 |
| authorships[3].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | National University of Defense Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yangyang Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China |
| authorships[4].author.id | https://openalex.org/A5090946297 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zhenyu Liang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China |
| authorships[4].institutions[0].id | https://openalex.org/I170215575 |
| authorships[4].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | National University of Defense Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhenyu Liang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/6/1770/pdf?version=1741793910 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Adversarial Example Detection Algorithm Based on High-Level Feature Differences |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2062399876, https://openalex.org/W2502115930, https://openalex.org/W2607795551, https://openalex.org/W2482350142, https://openalex.org/W4246396837, https://openalex.org/W3105849702, https://openalex.org/W1996690921, https://openalex.org/W4212888438, https://openalex.org/W2095030957, https://openalex.org/W2066827917 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25061770 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/6/1770/pdf?version=1741793910 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25061770 |
| primary_location.id | doi:10.3390/s25061770 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/6/1770/pdf?version=1741793910 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25061770 |
| publication_date | 2025-03-12 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6637162671, https://openalex.org/W1945616565, https://openalex.org/W2604505099, https://openalex.org/W4385356567, https://openalex.org/W4385768289, https://openalex.org/W6761100157, https://openalex.org/W6838695150, https://openalex.org/W2607219512, https://openalex.org/W3200113267, https://openalex.org/W2952388520, https://openalex.org/W2783692467, https://openalex.org/W2867167548, https://openalex.org/W4280628446, https://openalex.org/W2618492571, https://openalex.org/W3171821356, https://openalex.org/W3006520502, https://openalex.org/W3205486601, https://openalex.org/W4226086258, https://openalex.org/W2460937040, https://openalex.org/W2774644650, https://openalex.org/W2976752987, https://openalex.org/W3009542902, https://openalex.org/W2905631704, https://openalex.org/W2774018344, https://openalex.org/W2962872506, https://openalex.org/W2942630857, https://openalex.org/W2117539524, https://openalex.org/W2194775991, https://openalex.org/W4312443924, https://openalex.org/W2097117768, https://openalex.org/W2946948417, https://openalex.org/W3102720581, https://openalex.org/W3105009650 |
| referenced_works_count | 33 |
| abstract_inverted_index.A | 31 |
| abstract_inverted_index.a | 98, 127, 156, 196, 277 |
| abstract_inverted_index.By | 244 |
| abstract_inverted_index.If | 160 |
| abstract_inverted_index.In | 19 |
| abstract_inverted_index.It | 236 |
| abstract_inverted_index.To | 91 |
| abstract_inverted_index.an | 151, 172 |
| abstract_inverted_index.as | 65, 171, 224 |
| abstract_inverted_index.by | 3, 57, 230 |
| abstract_inverted_index.in | 88, 248, 281 |
| abstract_inverted_index.is | 54, 111, 135, 164, 169, 237 |
| abstract_inverted_index.of | 33, 51, 60, 73, 145, 284 |
| abstract_inverted_index.on | 76, 105, 208 |
| abstract_inverted_index.to | 7, 39, 114, 199, 240, 274 |
| abstract_inverted_index.DF, | 192 |
| abstract_inverted_index.FS, | 191 |
| abstract_inverted_index.For | 123 |
| abstract_inverted_index.MD, | 194 |
| abstract_inverted_index.Our | 210 |
| abstract_inverted_index.The | 0, 142, 175 |
| abstract_inverted_index.and | 44, 68, 120, 153, 193, 226, 253 |
| abstract_inverted_index.are | 148 |
| abstract_inverted_index.for | 180 |
| abstract_inverted_index.has | 11, 36 |
| abstract_inverted_index.new | 279 |
| abstract_inverted_index.the | 16, 48, 58, 61, 71, 131, 139, 161, 166, 202, 214, 257, 261, 282 |
| abstract_inverted_index.was | 178 |
| abstract_inverted_index.also | 238 |
| abstract_inverted_index.been | 25, 37, 85 |
| abstract_inverted_index.both | 118, 146 |
| abstract_inverted_index.deep | 8 |
| abstract_inverted_index.each | 124 |
| abstract_inverted_index.four | 184 |
| abstract_inverted_index.from | 15, 138 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.high | 264 |
| abstract_inverted_index.low, | 165 |
| abstract_inverted_index.over | 190 |
| abstract_inverted_index.same | 132, 258 |
| abstract_inverted_index.step | 80 |
| abstract_inverted_index.such | 64, 223 |
| abstract_inverted_index.test | 125, 167 |
| abstract_inverted_index.that | 213 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.type | 67 |
| abstract_inverted_index.with | 130, 195, 256 |
| abstract_inverted_index.(AEs) | 6 |
| abstract_inverted_index.ESRM. | 200, 209 |
| abstract_inverted_index.based | 104 |
| abstract_inverted_index.clean | 252 |
| abstract_inverted_index.image | 74, 129, 168 |
| abstract_inverted_index.label | 134 |
| abstract_inverted_index.novel | 99 |
| abstract_inverted_index.paper | 96 |
| abstract_inverted_index.posed | 2 |
| abstract_inverted_index.prior | 89 |
| abstract_inverted_index.range | 32 |
| abstract_inverted_index.these | 52, 93 |
| abstract_inverted_index.types | 270 |
| abstract_inverted_index.using | 150 |
| abstract_inverted_index.which | 110 |
| abstract_inverted_index.while | 271 |
| abstract_inverted_index.across | 267 |
| abstract_inverted_index.attack | 66, 269 |
| abstract_inverted_index.before | 81, 232 |
| abstract_inverted_index.benign | 42 |
| abstract_inverted_index.common | 79, 227 |
| abstract_inverted_index.design | 283 |
| abstract_inverted_index.image, | 126 |
| abstract_inverted_index.images | 147 |
| abstract_inverted_index.impact | 72 |
| abstract_inverted_index.label, | 260 |
| abstract_inverted_index.method | 177, 216, 262 |
| abstract_inverted_index.model. | 159 |
| abstract_inverted_index.target | 242 |
| abstract_inverted_index.threat | 1 |
| abstract_inverted_index.(HFDs), | 109 |
| abstract_inverted_index.address | 92 |
| abstract_inverted_index.against | 117, 183, 220 |
| abstract_inverted_index.applied | 229 |
| abstract_inverted_index.attacks | 119 |
| abstract_inverted_index.between | 41, 251 |
| abstract_inverted_index.defense | 22 |
| abstract_inverted_index.diverse | 268 |
| abstract_inverted_index.encoder | 152 |
| abstract_inverted_index.example | 29, 83, 101, 286 |
| abstract_inverted_index.feature | 107, 162 |
| abstract_inverted_index.focused | 206 |
| abstract_inverted_index.improve | 115 |
| abstract_inverted_index.largely | 86 |
| abstract_inverted_index.models. | 243 |
| abstract_inverted_index.results | 211 |
| abstract_inverted_index.samples | 43 |
| abstract_inverted_index.showing | 187 |
| abstract_inverted_index.through | 155 |
| abstract_inverted_index.various | 21, 241 |
| abstract_inverted_index.However, | 47 |
| abstract_inverted_index.academic | 17 |
| abstract_inverted_index.accuracy | 50, 182, 266 |
| abstract_inverted_index.achieves | 263 |
| abstract_inverted_index.attacks, | 63 |
| abstract_inverted_index.compared | 154 |
| abstract_inverted_index.dataset. | 141 |
| abstract_inverted_index.designed | 113 |
| abstract_inverted_index.example. | 174 |
| abstract_inverted_index.examples | 5, 255 |
| abstract_inverted_index.exhibits | 217 |
| abstract_inverted_index.features | 144, 250 |
| abstract_inverted_index.garnered | 12 |
| abstract_inverted_index.learning | 9 |
| abstract_inverted_index.methods, | 186 |
| abstract_inverted_index.proposed | 176, 215 |
| abstract_inverted_index.randomly | 136 |
| abstract_inverted_index.selected | 137 |
| abstract_inverted_index.semantic | 246 |
| abstract_inverted_index.superior | 218 |
| abstract_inverted_index.training | 140 |
| abstract_inverted_index.valuable | 278 |
| abstract_inverted_index.algorithm | 103 |
| abstract_inverted_index.attackers | 231 |
| abstract_inverted_index.attention | 14 |
| abstract_inverted_index.conflicts | 247 |
| abstract_inverted_index.detection | 34, 49, 77, 102, 181, 265, 287 |
| abstract_inverted_index.developed | 38 |
| abstract_inverted_index.evaluated | 179 |
| abstract_inverted_index.examples. | 46, 235 |
| abstract_inverted_index.extracted | 149 |
| abstract_inverted_index.including | 27 |
| abstract_inverted_index.predicted | 133, 259 |
| abstract_inverted_index.proposed, | 26 |
| abstract_inverted_index.providing | 276 |
| abstract_inverted_index.research. | 90 |
| abstract_inverted_index.response, | 20 |
| abstract_inverted_index.Therefore, | 201 |
| abstract_inverted_index.algorithms | 35, 53 |
| abstract_inverted_index.applicable | 239 |
| abstract_inverted_index.classified | 170 |
| abstract_inverted_index.community. | 18 |
| abstract_inverted_index.comparable | 198 |
| abstract_inverted_index.comparison | 185 |
| abstract_inverted_index.detection. | 30 |
| abstract_inverted_index.exploiting | 245 |
| abstract_inverted_index.generating | 233 |
| abstract_inverted_index.high-level | 106, 143, 249 |
| abstract_inverted_index.influenced | 56 |
| abstract_inverted_index.intensity. | 69 |
| abstract_inverted_index.introduces | 97 |
| abstract_inverted_index.overlooked | 87 |
| abstract_inverted_index.resilience | 273 |
| abstract_inverted_index.robustness | 116, 204, 219 |
| abstract_inverted_index.similarity | 157, 163 |
| abstract_inverted_index.strategies | 23 |
| abstract_inverted_index.subsequent | 203 |
| abstract_inverted_index.adversarial | 4, 28, 45, 62, 82, 100, 173, 234, 254, 285 |
| abstract_inverted_index.algorithms. | 288 |
| abstract_inverted_index.challenges, | 94 |
| abstract_inverted_index.counterpart | 128 |
| abstract_inverted_index.demonstrate | 212 |
| abstract_inverted_index.differences | 108 |
| abstract_inverted_index.exclusively | 207 |
| abstract_inverted_index.experiments | 205 |
| abstract_inverted_index.maintaining | 272 |
| abstract_inverted_index.measurement | 158 |
| abstract_inverted_index.operations, | 222 |
| abstract_inverted_index.operations. | 122 |
| abstract_inverted_index.performance | 197 |
| abstract_inverted_index.perspective | 280 |
| abstract_inverted_index.significant | 13, 188 |
| abstract_inverted_index.Furthermore, | 70 |
| abstract_inverted_index.applications | 10 |
| abstract_inverted_index.corruptions, | 228 |
| abstract_inverted_index.downsampling | 225 |
| abstract_inverted_index.improvements | 189 |
| abstract_inverted_index.specifically | 112 |
| abstract_inverted_index.differentiate | 40 |
| abstract_inverted_index.preprocessing | 75, 121, 221 |
| abstract_inverted_index.significantly | 55 |
| abstract_inverted_index.preprocessing, | 275 |
| abstract_inverted_index.robustness—a | 78 |
| abstract_inverted_index.characteristics | 59 |
| abstract_inverted_index.generation—has | 84 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5101107341 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I170215575 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.93301054 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |