Robust and Adaptive Confidence Intervals with Finite-Sample Validity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17606263
This paper introduces a novel framework for constructing confidence intervals that possess guaranteed finite-sample coverage probability without relying on asymptotic approximations or specific distributional assumptions. Traditional methods for interval estimation, such as those based on the central limit theorem or standard bootstrap techniques, often fail to achieve the nominal coverage level when sample sizes are small or when the underlying data distribution deviates from normality. Our proposed method, termed Robust Adaptive Conformal Intervals (RACI), synthesizes principles from robust statistics, adaptive inference, and conformal prediction to address these shortcomings. By employing a robustly studentized pivot statistic within a conformal inference framework, RACI ensures valid coverage for any finite sample size under the mild assumption of data exchangeability. The adaptive component allows the interval's width to adjust to the data's characteristics, such as skewness or heavy tails, thereby maintaining efficiency. We conduct extensive Monte Carlo simulations across a range of distributional scenarios, including normal, heavy-tailed, skewed, and contaminated distributions. The results demonstrate that RACI consistently achieves the nominal coverage rate, whereas classical and bootstrap intervals exhibit significant under-coverage in non-ideal settings. Furthermore, RACI maintains competitive average interval lengths, highlighting its practical utility for reliable uncertainty quantification in modern data analysis.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17606263
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7105736667
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105736667Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17606263Digital Object Identifier
- Title
-
Robust and Adaptive Confidence Intervals with Finite-Sample ValidityWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-14Full publication date if available
- Authors
-
SÉRGIO DE ANDRADE, PAULOList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17606263Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17606263Direct OA link when available
- Concepts
-
Studentized range, Coverage probability, Mathematics, Prediction interval, Confidence interval, Skewness, Range (aeronautics), Statistics, Monte Carlo method, Sample size determination, Statistic, Interval (graph theory), Inference, Limit (mathematics), Studentized residual, Statistical inference, Predictive inference, Probability distribution, Nominal level, Term (time), Robust confidence intervals, Confidence region, Sample (material), Robustness (evolution), Algorithm, Conformal map, Spurious relationship, Computer science, Asymptotic distribution, Central limit theorem, Data mining, Mathematical optimization, Empirical distribution function, Econometrics, Component (thermodynamics), Tolerance interval, Location parameterTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7105736667 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17606263 |
| ids.doi | https://doi.org/10.5281/zenodo.17606263 |
| ids.openalex | https://openalex.org/W7105736667 |
| fwci | 0.0 |
| type | article |
| title | Robust and Adaptive Confidence Intervals with Finite-Sample Validity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.1313374638557434 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.10254678875207901 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.09426228702068329 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C125918824 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7874914407730103 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7627920 |
| concepts[0].display_name | Studentized range |
| concepts[1].id | https://openalex.org/C2776292839 |
| concepts[1].level | 3 |
| concepts[1].score | 0.659765899181366 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5179217 |
| concepts[1].display_name | Coverage probability |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6204371452331543 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C103402496 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6185709238052368 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1106171 |
| concepts[3].display_name | Prediction interval |
| concepts[4].id | https://openalex.org/C44249647 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5880096554756165 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[4].display_name | Confidence interval |
| concepts[5].id | https://openalex.org/C122342681 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5189862847328186 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q330828 |
| concepts[5].display_name | Skewness |
| concepts[6].id | https://openalex.org/C204323151 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5144256949424744 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[6].display_name | Range (aeronautics) |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47726812958717346 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C19499675 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4671168625354767 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[8].display_name | Monte Carlo method |
| concepts[9].id | https://openalex.org/C129848803 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44619855284690857 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[9].display_name | Sample size determination |
| concepts[10].id | https://openalex.org/C89128539 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43518394231796265 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1949963 |
| concepts[10].display_name | Statistic |
| concepts[11].id | https://openalex.org/C2778067643 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42784956097602844 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[11].display_name | Interval (graph theory) |
| concepts[12].id | https://openalex.org/C2776214188 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42586809396743774 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[12].display_name | Inference |
| concepts[13].id | https://openalex.org/C151201525 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4103004038333893 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[13].display_name | Limit (mathematics) |
| concepts[14].id | https://openalex.org/C175615203 |
| concepts[14].level | 2 |
| concepts[14].score | 0.37187787890434265 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q6143358 |
| concepts[14].display_name | Studentized residual |
| concepts[15].id | https://openalex.org/C134261354 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3558107912540436 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[15].display_name | Statistical inference |
| concepts[16].id | https://openalex.org/C917703 |
| concepts[16].level | 5 |
| concepts[16].score | 0.3472359776496887 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7239668 |
| concepts[16].display_name | Predictive inference |
| concepts[17].id | https://openalex.org/C149441793 |
| concepts[17].level | 2 |
| concepts[17].score | 0.34373074769973755 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[17].display_name | Probability distribution |
| concepts[18].id | https://openalex.org/C154606282 |
| concepts[18].level | 3 |
| concepts[18].score | 0.33647462725639343 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7048579 |
| concepts[18].display_name | Nominal level |
| concepts[19].id | https://openalex.org/C61797465 |
| concepts[19].level | 2 |
| concepts[19].score | 0.32071974873542786 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[19].display_name | Term (time) |
| concepts[20].id | https://openalex.org/C66520545 |
| concepts[20].level | 3 |
| concepts[20].score | 0.3192620873451233 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7353538 |
| concepts[20].display_name | Robust confidence intervals |
| concepts[21].id | https://openalex.org/C143380155 |
| concepts[21].level | 3 |
| concepts[21].score | 0.31391286849975586 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5160088 |
| concepts[21].display_name | Confidence region |
| concepts[22].id | https://openalex.org/C198531522 |
| concepts[22].level | 2 |
| concepts[22].score | 0.3117537200450897 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[22].display_name | Sample (material) |
| concepts[23].id | https://openalex.org/C63479239 |
| concepts[23].level | 3 |
| concepts[23].score | 0.30886733531951904 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[23].display_name | Robustness (evolution) |
| concepts[24].id | https://openalex.org/C11413529 |
| concepts[24].level | 1 |
| concepts[24].score | 0.30723920464515686 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[24].display_name | Algorithm |
| concepts[25].id | https://openalex.org/C98214594 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2975172996520996 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q850275 |
| concepts[25].display_name | Conformal map |
| concepts[26].id | https://openalex.org/C97256817 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2947438061237335 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[26].display_name | Spurious relationship |
| concepts[27].id | https://openalex.org/C41008148 |
| concepts[27].level | 0 |
| concepts[27].score | 0.2916187047958374 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[27].display_name | Computer science |
| concepts[28].id | https://openalex.org/C65778772 |
| concepts[28].level | 3 |
| concepts[28].score | 0.2781623601913452 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q12345341 |
| concepts[28].display_name | Asymptotic distribution |
| concepts[29].id | https://openalex.org/C166785042 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2701149582862854 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q190391 |
| concepts[29].display_name | Central limit theorem |
| concepts[30].id | https://openalex.org/C124101348 |
| concepts[30].level | 1 |
| concepts[30].score | 0.2653312385082245 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[30].display_name | Data mining |
| concepts[31].id | https://openalex.org/C126255220 |
| concepts[31].level | 1 |
| concepts[31].score | 0.2643236517906189 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[31].display_name | Mathematical optimization |
| concepts[32].id | https://openalex.org/C98385598 |
| concepts[32].level | 2 |
| concepts[32].score | 0.2632429897785187 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q1339385 |
| concepts[32].display_name | Empirical distribution function |
| concepts[33].id | https://openalex.org/C149782125 |
| concepts[33].level | 1 |
| concepts[33].score | 0.2630728781223297 |
| concepts[33].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[33].display_name | Econometrics |
| concepts[34].id | https://openalex.org/C168167062 |
| concepts[34].level | 2 |
| concepts[34].score | 0.26141223311424255 |
| concepts[34].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[34].display_name | Component (thermodynamics) |
| concepts[35].id | https://openalex.org/C10590107 |
| concepts[35].level | 3 |
| concepts[35].score | 0.25685715675354004 |
| concepts[35].wikidata | https://www.wikidata.org/wiki/Q7814221 |
| concepts[35].display_name | Tolerance interval |
| concepts[36].id | https://openalex.org/C18294631 |
| concepts[36].level | 3 |
| concepts[36].score | 0.2564234435558319 |
| concepts[36].wikidata | https://www.wikidata.org/wiki/Q2621185 |
| concepts[36].display_name | Location parameter |
| keywords[0].id | https://openalex.org/keywords/studentized-range |
| keywords[0].score | 0.7874914407730103 |
| keywords[0].display_name | Studentized range |
| keywords[1].id | https://openalex.org/keywords/coverage-probability |
| keywords[1].score | 0.659765899181366 |
| keywords[1].display_name | Coverage probability |
| keywords[2].id | https://openalex.org/keywords/prediction-interval |
| keywords[2].score | 0.6185709238052368 |
| keywords[2].display_name | Prediction interval |
| keywords[3].id | https://openalex.org/keywords/confidence-interval |
| keywords[3].score | 0.5880096554756165 |
| keywords[3].display_name | Confidence interval |
| keywords[4].id | https://openalex.org/keywords/skewness |
| keywords[4].score | 0.5189862847328186 |
| keywords[4].display_name | Skewness |
| keywords[5].id | https://openalex.org/keywords/range |
| keywords[5].score | 0.5144256949424744 |
| keywords[5].display_name | Range (aeronautics) |
| keywords[6].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[6].score | 0.4671168625354767 |
| keywords[6].display_name | Monte Carlo method |
| keywords[7].id | https://openalex.org/keywords/sample-size-determination |
| keywords[7].score | 0.44619855284690857 |
| keywords[7].display_name | Sample size determination |
| keywords[8].id | https://openalex.org/keywords/statistic |
| keywords[8].score | 0.43518394231796265 |
| keywords[8].display_name | Statistic |
| keywords[9].id | https://openalex.org/keywords/interval |
| keywords[9].score | 0.42784956097602844 |
| keywords[9].display_name | Interval (graph theory) |
| language | |
| locations[0].id | doi:10.5281/zenodo.17606263 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17606263 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | SÉRGIO DE ANDRADE, PAULO |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | SÉRGIO DE ANDRADE, PAULO |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17606263 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-15T00:00:00 |
| display_name | Robust and Adaptive Confidence Intervals with Finite-Sample Validity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-15T23:16:52.776844 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.1313374638557434 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17606263 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17606263 |
| primary_location.id | doi:10.5281/zenodo.17606263 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17606263 |
| publication_date | 2025-11-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 90, 96, 145 |
| abstract_inverted_index.By | 88 |
| abstract_inverted_index.We | 138 |
| abstract_inverted_index.as | 31, 130 |
| abstract_inverted_index.in | 176, 194 |
| abstract_inverted_index.of | 113, 147 |
| abstract_inverted_index.on | 18, 34 |
| abstract_inverted_index.or | 21, 39, 56, 132 |
| abstract_inverted_index.to | 45, 84, 123, 125 |
| abstract_inverted_index.Our | 65 |
| abstract_inverted_index.The | 116, 157 |
| abstract_inverted_index.and | 81, 154, 170 |
| abstract_inverted_index.any | 105 |
| abstract_inverted_index.are | 54 |
| abstract_inverted_index.for | 6, 27, 104, 190 |
| abstract_inverted_index.its | 187 |
| abstract_inverted_index.the | 35, 47, 58, 110, 120, 126, 164 |
| abstract_inverted_index.RACI | 100, 161, 180 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 60, 114, 196 |
| abstract_inverted_index.fail | 44 |
| abstract_inverted_index.from | 63, 76 |
| abstract_inverted_index.mild | 111 |
| abstract_inverted_index.size | 108 |
| abstract_inverted_index.such | 30, 129 |
| abstract_inverted_index.that | 10, 160 |
| abstract_inverted_index.when | 51, 57 |
| abstract_inverted_index.Carlo | 142 |
| abstract_inverted_index.Monte | 141 |
| abstract_inverted_index.based | 33 |
| abstract_inverted_index.heavy | 133 |
| abstract_inverted_index.level | 50 |
| abstract_inverted_index.limit | 37 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.often | 43 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.pivot | 93 |
| abstract_inverted_index.range | 146 |
| abstract_inverted_index.rate, | 167 |
| abstract_inverted_index.sizes | 53 |
| abstract_inverted_index.small | 55 |
| abstract_inverted_index.these | 86 |
| abstract_inverted_index.those | 32 |
| abstract_inverted_index.under | 109 |
| abstract_inverted_index.valid | 102 |
| abstract_inverted_index.width | 122 |
| abstract_inverted_index.Robust | 69 |
| abstract_inverted_index.across | 144 |
| abstract_inverted_index.adjust | 124 |
| abstract_inverted_index.allows | 119 |
| abstract_inverted_index.data's | 127 |
| abstract_inverted_index.finite | 106 |
| abstract_inverted_index.modern | 195 |
| abstract_inverted_index.robust | 77 |
| abstract_inverted_index.sample | 52, 107 |
| abstract_inverted_index.tails, | 134 |
| abstract_inverted_index.termed | 68 |
| abstract_inverted_index.within | 95 |
| abstract_inverted_index.(RACI), | 73 |
| abstract_inverted_index.achieve | 46 |
| abstract_inverted_index.address | 85 |
| abstract_inverted_index.average | 183 |
| abstract_inverted_index.central | 36 |
| abstract_inverted_index.conduct | 139 |
| abstract_inverted_index.ensures | 101 |
| abstract_inverted_index.exhibit | 173 |
| abstract_inverted_index.method, | 67 |
| abstract_inverted_index.methods | 26 |
| abstract_inverted_index.nominal | 48, 165 |
| abstract_inverted_index.normal, | 151 |
| abstract_inverted_index.possess | 11 |
| abstract_inverted_index.relying | 17 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.skewed, | 153 |
| abstract_inverted_index.theorem | 38 |
| abstract_inverted_index.thereby | 135 |
| abstract_inverted_index.utility | 189 |
| abstract_inverted_index.whereas | 168 |
| abstract_inverted_index.without | 16 |
| abstract_inverted_index.Adaptive | 70 |
| abstract_inverted_index.achieves | 163 |
| abstract_inverted_index.adaptive | 79, 117 |
| abstract_inverted_index.coverage | 14, 49, 103, 166 |
| abstract_inverted_index.deviates | 62 |
| abstract_inverted_index.interval | 28, 184 |
| abstract_inverted_index.lengths, | 185 |
| abstract_inverted_index.proposed | 66 |
| abstract_inverted_index.reliable | 191 |
| abstract_inverted_index.robustly | 91 |
| abstract_inverted_index.skewness | 131 |
| abstract_inverted_index.specific | 22 |
| abstract_inverted_index.standard | 40 |
| abstract_inverted_index.Conformal | 71 |
| abstract_inverted_index.Intervals | 72 |
| abstract_inverted_index.analysis. | 197 |
| abstract_inverted_index.bootstrap | 41, 171 |
| abstract_inverted_index.classical | 169 |
| abstract_inverted_index.component | 118 |
| abstract_inverted_index.conformal | 82, 97 |
| abstract_inverted_index.employing | 89 |
| abstract_inverted_index.extensive | 140 |
| abstract_inverted_index.framework | 5 |
| abstract_inverted_index.including | 150 |
| abstract_inverted_index.inference | 98 |
| abstract_inverted_index.intervals | 9, 172 |
| abstract_inverted_index.maintains | 181 |
| abstract_inverted_index.non-ideal | 177 |
| abstract_inverted_index.practical | 188 |
| abstract_inverted_index.settings. | 178 |
| abstract_inverted_index.statistic | 94 |
| abstract_inverted_index.assumption | 112 |
| abstract_inverted_index.asymptotic | 19 |
| abstract_inverted_index.confidence | 8 |
| abstract_inverted_index.framework, | 99 |
| abstract_inverted_index.guaranteed | 12 |
| abstract_inverted_index.inference, | 80 |
| abstract_inverted_index.interval's | 121 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.normality. | 64 |
| abstract_inverted_index.prediction | 83 |
| abstract_inverted_index.principles | 75 |
| abstract_inverted_index.scenarios, | 149 |
| abstract_inverted_index.underlying | 59 |
| abstract_inverted_index.Traditional | 25 |
| abstract_inverted_index.competitive | 182 |
| abstract_inverted_index.demonstrate | 159 |
| abstract_inverted_index.efficiency. | 137 |
| abstract_inverted_index.estimation, | 29 |
| abstract_inverted_index.maintaining | 136 |
| abstract_inverted_index.probability | 15 |
| abstract_inverted_index.significant | 174 |
| abstract_inverted_index.simulations | 143 |
| abstract_inverted_index.statistics, | 78 |
| abstract_inverted_index.studentized | 92 |
| abstract_inverted_index.synthesizes | 74 |
| abstract_inverted_index.techniques, | 42 |
| abstract_inverted_index.uncertainty | 192 |
| abstract_inverted_index.Furthermore, | 179 |
| abstract_inverted_index.assumptions. | 24 |
| abstract_inverted_index.consistently | 162 |
| abstract_inverted_index.constructing | 7 |
| abstract_inverted_index.contaminated | 155 |
| abstract_inverted_index.distribution | 61 |
| abstract_inverted_index.highlighting | 186 |
| abstract_inverted_index.finite-sample | 13 |
| abstract_inverted_index.heavy-tailed, | 152 |
| abstract_inverted_index.shortcomings. | 87 |
| abstract_inverted_index.approximations | 20 |
| abstract_inverted_index.distributional | 23, 148 |
| abstract_inverted_index.distributions. | 156 |
| abstract_inverted_index.quantification | 193 |
| abstract_inverted_index.under-coverage | 175 |
| abstract_inverted_index.characteristics, | 128 |
| abstract_inverted_index.exchangeability. | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.9102974 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |