Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank Adaptation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.04358
Large Language Models (LLMs) are highly resource-intensive to fine-tune due to their enormous size. While low-rank adaptation is a prominent parameter-efficient fine-tuning approach, it suffers from sensitivity to hyperparameter choices, leading to instability in model performance on fine-tuning downstream tasks. This paper highlights the importance of effective parameterization in low-rank fine-tuning to reduce estimator variance and enhance the stability of final model outputs. We propose MonteCLoRA, an efficient fine-tuning technique that employs Monte Carlo estimation to learn an unbiased posterior estimation of low-rank parameters with low expected variance, stabilizing fine-tuned LLMs with only O(r) additional parameters, for a given rank r. MonteCLoRA shows 0.5% and 1.6% improvements in accuracy and robustness over unregularized low-rank adaptation method on natural language understanding tasks with pre-trained RoBERTa-base. Furthermore, in generative tasks with pre-trained LLaMA-1-7B and LLaMA-3.2-3B-Instruct, MonteCLoRA demonstrates robust performance with 50% and 62% lower spreads respectively than the contemporary efficient fine-tuning methods. The theoretical and empirical results presented in the paper underscore how parameterization and hyperpriors balance exploration-exploitation in the low-rank parametric space, therefore leading to more optimal and robust parameter estimation during efficient fine-tuning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.04358
- https://arxiv.org/pdf/2411.04358
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404388959
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404388959Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.04358Digital Object Identifier
- Title
-
Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank AdaptationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-07Full publication date if available
- Authors
-
Ayan Sengupta, Vaibhav Seth, Ashok Kumar Pathak, Natraj Raman, Sriram Gopalakrishnan, Tanmoy ChakrabortyList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.04358Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.04358Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.04358Direct OA link when available
- Concepts
-
Adaptation (eye), Bayesian probability, Rank (graph theory), Econometrics, Computer science, Economics, Mathematics, Artificial intelligence, Psychology, Combinatorics, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404388959 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.04358 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.04358 |
| ids.openalex | https://openalex.org/W4404388959 |
| fwci | |
| type | preprint |
| title | Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank Adaptation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9847999811172485 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Data Compression Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9805999994277954 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T13717 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9502000212669373 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Algorithms and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C139807058 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6866216659545898 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[0].display_name | Adaptation (eye) |
| concepts[1].id | https://openalex.org/C107673813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6473720669746399 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[1].display_name | Bayesian probability |
| concepts[2].id | https://openalex.org/C164226766 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6458088755607605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[2].display_name | Rank (graph theory) |
| concepts[3].id | https://openalex.org/C149782125 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48324522376060486 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[3].display_name | Econometrics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3813646733760834 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C162324750 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3424433469772339 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[5].display_name | Economics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3014771342277527 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.25594452023506165 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.25246360898017883 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.06809130311012268 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/adaptation |
| keywords[0].score | 0.6866216659545898 |
| keywords[0].display_name | Adaptation (eye) |
| keywords[1].id | https://openalex.org/keywords/bayesian-probability |
| keywords[1].score | 0.6473720669746399 |
| keywords[1].display_name | Bayesian probability |
| keywords[2].id | https://openalex.org/keywords/rank |
| keywords[2].score | 0.6458088755607605 |
| keywords[2].display_name | Rank (graph theory) |
| keywords[3].id | https://openalex.org/keywords/econometrics |
| keywords[3].score | 0.48324522376060486 |
| keywords[3].display_name | Econometrics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3813646733760834 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/economics |
| keywords[5].score | 0.3424433469772339 |
| keywords[5].display_name | Economics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3014771342277527 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.25594452023506165 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.25246360898017883 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/combinatorics |
| keywords[9].score | 0.06809130311012268 |
| keywords[9].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.04358 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.04358 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.04358 |
| locations[1].id | doi:10.48550/arxiv.2411.04358 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.04358 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102973342 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6298-3207 |
| authorships[0].author.display_name | Ayan Sengupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sengupta, Ayan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114653312 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vaibhav Seth |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seth, Vaibhav |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101938221 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0774-1202 |
| authorships[2].author.display_name | Ashok Kumar Pathak |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pathak, Arinjay |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065006343 |
| authorships[3].author.orcid | https://orcid.org/0009-0008-8866-1482 |
| authorships[3].author.display_name | Natraj Raman |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Raman, Natraj |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5037582330 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6461-391X |
| authorships[4].author.display_name | Sriram Gopalakrishnan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gopalakrishnan, Sriram |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5046521217 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0210-0369 |
| authorships[5].author.display_name | Tanmoy Chakraborty |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chakraborty, Tanmoy |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.04358 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank Adaptation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9847999811172485 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Data Compression Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2997567050, https://openalex.org/W1483272040, https://openalex.org/W4283377908, https://openalex.org/W1526712007, https://openalex.org/W1533421371, https://openalex.org/W2003050223, https://openalex.org/W2091777911, https://openalex.org/W2112835755, https://openalex.org/W2766405861 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.04358 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.04358 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.04358 |
| primary_location.id | pmh:oai:arXiv.org:2411.04358 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.04358 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.04358 |
| publication_date | 2024-11-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 97 |
| abstract_inverted_index.We | 63 |
| abstract_inverted_index.an | 66, 77 |
| abstract_inverted_index.in | 33, 48, 107, 125, 156, 166 |
| abstract_inverted_index.is | 17 |
| abstract_inverted_index.it | 23 |
| abstract_inverted_index.of | 45, 59, 81 |
| abstract_inverted_index.on | 36, 116 |
| abstract_inverted_index.r. | 100 |
| abstract_inverted_index.to | 7, 10, 27, 31, 51, 75, 173 |
| abstract_inverted_index.50% | 138 |
| abstract_inverted_index.62% | 140 |
| abstract_inverted_index.The | 150 |
| abstract_inverted_index.and | 55, 104, 109, 131, 139, 152, 162, 176 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 96 |
| abstract_inverted_index.how | 160 |
| abstract_inverted_index.low | 85 |
| abstract_inverted_index.the | 43, 57, 145, 157, 167 |
| abstract_inverted_index.0.5% | 103 |
| abstract_inverted_index.1.6% | 105 |
| abstract_inverted_index.LLMs | 90 |
| abstract_inverted_index.O(r) | 93 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.from | 25 |
| abstract_inverted_index.more | 174 |
| abstract_inverted_index.only | 92 |
| abstract_inverted_index.over | 111 |
| abstract_inverted_index.rank | 99 |
| abstract_inverted_index.than | 144 |
| abstract_inverted_index.that | 70 |
| abstract_inverted_index.with | 84, 91, 121, 128, 137 |
| abstract_inverted_index.Carlo | 73 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.Monte | 72 |
| abstract_inverted_index.While | 14 |
| abstract_inverted_index.final | 60 |
| abstract_inverted_index.given | 98 |
| abstract_inverted_index.learn | 76 |
| abstract_inverted_index.lower | 141 |
| abstract_inverted_index.model | 34, 61 |
| abstract_inverted_index.paper | 41, 158 |
| abstract_inverted_index.shows | 102 |
| abstract_inverted_index.size. | 13 |
| abstract_inverted_index.tasks | 120, 127 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.during | 180 |
| abstract_inverted_index.highly | 5 |
| abstract_inverted_index.method | 115 |
| abstract_inverted_index.reduce | 52 |
| abstract_inverted_index.robust | 135, 177 |
| abstract_inverted_index.space, | 170 |
| abstract_inverted_index.tasks. | 39 |
| abstract_inverted_index.balance | 164 |
| abstract_inverted_index.employs | 71 |
| abstract_inverted_index.enhance | 56 |
| abstract_inverted_index.leading | 30, 172 |
| abstract_inverted_index.natural | 117 |
| abstract_inverted_index.optimal | 175 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.results | 154 |
| abstract_inverted_index.spreads | 142 |
| abstract_inverted_index.suffers | 24 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.accuracy | 108 |
| abstract_inverted_index.choices, | 29 |
| abstract_inverted_index.enormous | 12 |
| abstract_inverted_index.expected | 86 |
| abstract_inverted_index.language | 118 |
| abstract_inverted_index.low-rank | 15, 49, 82, 113, 168 |
| abstract_inverted_index.methods. | 149 |
| abstract_inverted_index.outputs. | 62 |
| abstract_inverted_index.unbiased | 78 |
| abstract_inverted_index.variance | 54 |
| abstract_inverted_index.approach, | 22 |
| abstract_inverted_index.effective | 46 |
| abstract_inverted_index.efficient | 67, 147, 181 |
| abstract_inverted_index.empirical | 153 |
| abstract_inverted_index.estimator | 53 |
| abstract_inverted_index.fine-tune | 8 |
| abstract_inverted_index.parameter | 178 |
| abstract_inverted_index.posterior | 79 |
| abstract_inverted_index.presented | 155 |
| abstract_inverted_index.prominent | 19 |
| abstract_inverted_index.stability | 58 |
| abstract_inverted_index.technique | 69 |
| abstract_inverted_index.therefore | 171 |
| abstract_inverted_index.variance, | 87 |
| abstract_inverted_index.LLaMA-1-7B | 130 |
| abstract_inverted_index.MonteCLoRA | 101, 133 |
| abstract_inverted_index.adaptation | 16, 114 |
| abstract_inverted_index.additional | 94 |
| abstract_inverted_index.downstream | 38 |
| abstract_inverted_index.estimation | 74, 80, 179 |
| abstract_inverted_index.fine-tuned | 89 |
| abstract_inverted_index.generative | 126 |
| abstract_inverted_index.highlights | 42 |
| abstract_inverted_index.importance | 44 |
| abstract_inverted_index.parameters | 83 |
| abstract_inverted_index.parametric | 169 |
| abstract_inverted_index.robustness | 110 |
| abstract_inverted_index.underscore | 159 |
| abstract_inverted_index.MonteCLoRA, | 65 |
| abstract_inverted_index.fine-tuning | 21, 37, 50, 68, 148 |
| abstract_inverted_index.hyperpriors | 163 |
| abstract_inverted_index.instability | 32 |
| abstract_inverted_index.parameters, | 95 |
| abstract_inverted_index.performance | 35, 136 |
| abstract_inverted_index.pre-trained | 122, 129 |
| abstract_inverted_index.sensitivity | 26 |
| abstract_inverted_index.stabilizing | 88 |
| abstract_inverted_index.theoretical | 151 |
| abstract_inverted_index.Furthermore, | 124 |
| abstract_inverted_index.contemporary | 146 |
| abstract_inverted_index.demonstrates | 134 |
| abstract_inverted_index.fine-tuning. | 182 |
| abstract_inverted_index.improvements | 106 |
| abstract_inverted_index.respectively | 143 |
| abstract_inverted_index.RoBERTa-base. | 123 |
| abstract_inverted_index.understanding | 119 |
| abstract_inverted_index.unregularized | 112 |
| abstract_inverted_index.hyperparameter | 28 |
| abstract_inverted_index.parameterization | 47, 161 |
| abstract_inverted_index.resource-intensive | 6 |
| abstract_inverted_index.parameter-efficient | 20 |
| abstract_inverted_index.LLaMA-3.2-3B-Instruct, | 132 |
| abstract_inverted_index.exploration-exploitation | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |